
AO-A119 061 12T RESEARCH INST ROME NT Fo 9/
A A9 SP9 IN THE PAVE PAYS SOFWAI MAINTENANCI NVIRONN0CN.(U)U

P30601-80-C-0223
UNCLASSZF IED

RAWC-ursitAva -COSSNL

111

I II. lnllli-h-hhh I
Im, MhiE
lllllllllhdll

, wl l Ztq_-v

.0
YM

41
llJU, .,-'-,&-4,,- 4i

A _ A

IfY A
FIN, I ;, i .1 "'1 -, - 4, . .., -', . I . I " , 1 ,_...

, it

Oil

Q--A

95

4p

ts
2p,

I.t I

714 :"4

1-p
w

......................

110,

41F

oft

I I

oft

-"r1p;

, 4.1

7V7,

UNCLASSIFIED
SecuureY CLASSIFICATION 0F THIS PAGE ('10hu, Det enterogr)l

REPORT DOCUMENTATION PAGE BEFO CMTINGORM
. REPORT UMR . GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

RADC-TR-82-169 A I/
4. TITLE (md Sbtitje) 5. TYPE OF REPORT A PC4O0 COVERED

MPP IN THE PAVE PAWS SOFTWARE MAINTENANCE inal Technical Report

EN.IRONMENT 17 June 80 - 17 October 81
I N. RFORMOG 010. RPORT NUMER/A

7• AUTNOR(a) TA OR Co"?AN MMI8)

IITRI Staff F30602-80-C-0223

9. PERFORMING ORGANIZATION NAME ANO AOORESS 10. PROGRAM ELEMENT PROJIECT. TASK

AREA B WORK UNIT NUMBERS
IIT Research Institute

A & KTF

199 Liberty Plaza 63728F

Rome NY 13440. 25280105

IS. CONTROLLING OFFICE NAME ANO AOORESS 12. REPORT OAYE

Rome Air Development Center (COEE) June 1982

Griffiss AFB NY 13441 13. NUMBER OF PAGES

14. MONITORING AGENCY NAME & AOORESS(II dllent trae Controlling Office) IS. SECURITY CLASS. f.1 o11 open)

NCLASSIFIED

Same 18.. OECLASSIFICATION/OOWNG~RA-oNsG
1A SCHEDULE:/A

IS. OISTRIBUTION STATEMENT /e Ptla Rp.#t)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT rat the dbetroce entered in Block . iI dlffer from, Report)

Same

13. SUPPLEMENTARY NOTES

RDC Project Engineer: John Palaimo (COEE)

1s. KEY WOROS (Cout... on .oe.. aide 11 mocoo*Ms and dentify' by block nun bw)

Modern Programming Practices
Operation and Maintenance
Software Data Collection
Software Engineering Tools
20. ABSTRACT (Continue a r.o.eae *td If neoeeoen old Identify b block n itj)

This report presents the results of a study to establish a baseline software
maintenance experience database and to determine relationships which exist
on the use of Modern Programming Practices and Software Engineering Tools on
the ease of software maintenance of the PAVE PAWS Phased Array Warning
Systemi

D , ",Am 1473 go1.10. o.r S IS OBSOLETE

SECURITY CLASSIFICATION OF T PAGE (When Ddt. Ente1ed)

MINON SOEP-

PREFACE

This document is the final report of Rome Air Development Center contract

F30602-80-C-0223 titled "Analysis of PAVE PAWS Ops Data". This contract was

performed in support of the U.S. Air Force Electronic Systems Division's (ESD)

and Rome Air Development Center's (RADC) mission to provide standards and

technical guidance to software acquisition managers.

This report presents the results of a study tu establish a baseline software

maintenance experience database and to determine relationships which exist

between the use of Modern Programming Practices and Software Engineering Tools on

the ease of software maintenance of the PAVE PAWS Phased Array Warning System.

To achieve this purpose the IIT Research Institute (IITRI) study team

performed a literature search, conducted on-site interviews, collected anomoly

and change data, established continuing data collection and analysis procedures,

developed a machine readable software maintenance experience database and

performed analysis of the anomoly and change data.

Accession For

NT(S CTA?.I

1<61

Codes

lbr

A.

Fnliii F%

ACRONYMS

AD - SPA Division

ADCOM - Air Defense Comand

ADP - Programing Branch

ANP/ANL - Programming Branch/Analysis Section

ADP/TAC - Programming Branch/Tactical Section

ADP/'RDR - Programing Branch/Radar Control Section

ADP/SYS - Programming Branch/Operating System Section

ADQ - Quality Assurance Branch

CCB - Configuration Control Board

CDF - CPCG Description Form

CMAF - CPCG Maintenance Activity Form

CPC - Computer Program Component

CPCG - Computer Program Configuration Group

CPCI - Computer Program Configuration Item

CPT - Chief Programmer Team

CPT & E - Chief Programmer Test and Evaluation

CPU - Csntral Processing Unit
CRB - Configuration Review Board

DACS - Data and Analysis Center For Software

DBMS - Data Base Management System

DR - Discrepancy Report

DRDB - Discrepancy Report Data Base

DT & E - Development Test and Evaluation

ESD - Electronic Systems Division

HIPO - Hierarchical Input-Process-Output

HOL - Higher Order Language

HQ - Headquarters

1/0 - Input/Output

INTV - Interview Data

JCL - Job Control Language

LOC - Lines of Code

LOL - Lower Order Language

MAF Maintenance Activity Form

MDIS - Modification Design and Interface Specification

v *

PREC).JiG PA

Sim,!

MDQS - Management Data Query System

MPP - Modern Programming Practices

MRA - Memo of Recommended Action

MWS - Missile Warning Squadron

NORAD - North American Defense

O & M - Operations and Maintenance

OT & E - Operational Test and Evaluation

PC - Project Control

PCD - Program Change Document

PCF - Project Control Form

PDDR - Program Document Discrepancy Report

PDL - Program Design Language

PDTR - PAVE PAWS Data Reduction Miscellaneous Support

PEP - Programmer Experience Profile

PMR - Program Modification Request

PPCDF - PAVE PAWS CPCG Description File

PPCSF - PAVF PAWS Segment Change History File

PPDRH - PAVE PAWS Report History File

,PMAF - PAVE PAWS CPCG Maintenance Activity File
PPOS - PAVE PAWS Operating System

PPPCH - PAVE PAWS CPC Change History File

PPPEP - PAVE PAWS Programmer Experience Profile File

PPSCH - PAVE PAWS Segment Change History File

PPSL - PAVE PAWS PSL Software

PRCL - PAVE PAWS Radar Control Software, Signal Processor Software

Receiver/Transmitter Test Software System Analysis

PRG - Summary by Programs

PSL - Program Support Library

PSIM - PAVE PAWS Simulation and Target Scenario Generation

PT & E - Program Test and Evaluation

PTAC - PAVE PAWS Tactical Software

RADC - Rome Air Development Center

SAC - Strategic Air Command

SCRB - Site Configuration Review Board

SE - Software Engineering

SEG - Summary hy Segments

vi

SP - Structured Progrming
SPA - System Programuing AgencySPO - System Project Office
SVR - Software Version Release
S/W - Software
6MWS - Sixth Missile Warning Squadron
7MWS - Seventh Missile Warning Squadron

viiK

TABLE OF CONTENTS

PAGE
I INTRODUCTION 1-1

1.1 objectives and Scope. 1-1
1.2 Background. 1-1
1.3 Management Summary. 1-3

1.3.1 Purposes of this Study 1-3

1.3.2 Summary of the Study Approach. 1-4
2 PAVE PAWS MAINTENANCE ENVIRONMENT 2-1

2.1 Introduction. 2-1
2.2 PAVE PAWS Maintenance Organization 2-1
2.3 PAVE PAWS Maintenance Process Overview. 2-4
2.4 Configuration Control Summnary Description 2-7

3 DATA COLLECTION 3-1
3.1 Methodology 3-1
3.2 Data Identification 3-2

3.2.1 Questionnaire Interview Procedure 3-3
3.3 Data Collection (Data Availability). 3-4
3.4 Data Collection Forms 3-5

3.4.1 Introduction 3-5

3.4.2 Programmer Experience Profile (PEP) Form. 3-5

3.4.3 CPCG Description Form (CO) 3-6
3.4.4 CPCG Maintenance Activity Form (CMAF). 3-6

3.5 Data Processing and Summarization. 3-12
3.6 PAVE PAWS Maintenance Data Base 3-15

4 STUDY RESULTS. 4-1
4.1 Introduction. 4-1
4.2 Summary of PAVE PAWS Maintenance Personnel Interviews .. . 4-1

4.2.1 Top-Down Program Development 4-2
4.2.2 Chief Programmer Team/Librarian. 4-3
4.2.3 Structured Programming. 4-5
4.2.4 Structured Walkthrough and Reviews. 4-6
4.2.5 Independent Quality Assurance/Testing. 4-7
4.2.6 Program Support Library (PSL) 4-9

4.2.7 HIPO Charts 4-10

viiiL

TABLE OF CONTENTS (CONT'D)

PAGE

4.2.8 Program Design Language (POL) 4-11

4.2.9 Precompilers 4-12

4.3 Empirical Data Summary 4-12

4.3.1 Introduction 4-13

4.3.2 Maintenance Forms Generation Procedure 4-14

4.3.2.1 Maintenance Packages 4-14

4.3.3 Data Distributions 4-15

4.3.3.1 Productivity Data 4-15

4.3.3.2 Measurement Data 4-23

4.3.4 Data Collection Refinements 4-28

4.3.5 Future Research 4-28

4.4 Conclusions and Recommendations 4-29

REFERENCES R-1

APPENDIX A - INSTRUCTIONS FOR COMPLETING DATA COLLECTION FORMS . . . A-i

APPENDIX B - PAVE PAWS MAINTENANCE DATABASE B-1

ix

LIST OF FIGURES

PAGE

FIGURE 3.1: EXAMPLE OF COMPLETED PROGRAMMER PROFILE 3-7

FIGURE 3.2: EXAMPLE OF COMPLETED "PEP" CODING FORM 3-8

FIGURE 3.3: EXAMPLE OF COMPLETED CPCG DESCRIPTION FORM 3-9

FIGURE 3.4: EXAMPLE OF COMPLETED CDF FORM 3-10

FIGURE 3.5: EXAMPLE OF COMPLETED CPCG STATUS CODING FORM 3-11

FIGURE 3.6: EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY FORM. .. 3-13

FIGURE 3.7: EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY CODING. 3-14

FORM

FIGURE 3.8: DATABASE FILES 3-17

TABLE OF TABLES

PAGE

TABLE 4.1: DR DISTRIBUTION 4-13

TABLE 4.2: CPCI ASSIGNMENTS 4-14

TABLE 4.3: DISTRIBUTION OF MAINTENANCE PACKETS EXAMINED 4-14

TABLE 4.4: CHANGES BY TYPE AND MANHOURS EXPENDED 4-16

TABLE 4.5: MANHOURS BY CHANGE 4-17

TABLE 4.6: EFFECTED LINES OF CODE DISTRIBUTION 4-19

TABLE 4.7: EXPANSION RATIOS 4-20

TABLE 4.8: PRODUCTIVITY MEASUREMENTS 4-21

TABLE 4.9: MANHOURS PER 1000 LOC 4-22

TABLE 4.10: LOC GENERATED/MONTH 4-22

TABLE 4.11: EFFORT VERSUS ERROR CORRECTION/ENHANCEMENT 4-24

TABLE 4.12: ERROR TYPE DISTRIBUTION 4-25

TABLE 4.13: MEANS OF DETECTION DISTRIBUTION 4-26

TABLE 4.14: ERROR TYPE VERSUS MEANS OF DETECTION 4-27

x€

ACKNOWLEDGMENT

IIT Research Institute wishes to express sincere thanks to Lt. Col. R.
Youngblood, Capt. A. Harriott, Capt. R. Hart, Capt. 0. Henry, and Mr. G. Tyrrel
of the PAVE PAWS System Programming Agency for permitting us access to their
environment, providing time froml their busy schedules to support the collection

of information, and allowing access to their files that permitted evaluation of

Modern Programming Practices, Tools and Techniques in the PAVE PAWS maintenance

environment.

xi

SECTION I

INTRODUCTION

1.1 Objectives and Scope

The overall goal of this effort is to provide an evaluation of the impact of

Modern Programing Practices (MPP), tools, and techniques on the Operations and
Maintenance (0 & M) phase of the PAVE PAWS software life cycle. While the use of
modern programming techniques and software engineering tools for software
development is reported to produce significant improvements in programmer

productivity, cost, reliability and quality of software systems, the PAVE PAWS
environment is believed to be the first area in which the impact of these
approaches may be evaluated in the 0 & M environment. Structured coding,
programming conventions, program design language, top-down design, the program

support library, etc. should make software 0 & M tasks easier, reduce manpower

and training requirements, and thus reduce overall costs.

The objectives of this effort are two fold: 1) to determine if the tools
used for software development also have an impact on the 0 & M phase of the

software life cycle, and 2) to compile a database of 0 & M information.

1.2 Background

For a number of years, the U.S. Air Force through its procurement agencies,
the Electronic Systems Division (ESO) at Hanscom AFB, Massachusetts and the Rome
Air Development Center (RADC) at Griffiss AFB, New York, have pursued the
development of methodologies for the reduction of software development costs,
maintenance costs and the improvement of software quality. The impetus for this
effort has come from increasing demands for error-free, highly reliable

software; from the need for software easily i.e., quickly and inexpensively
modified to meet newly imposed requirements; and from the recognition that a

cost-effective software engineering discipline can be achieved through the
identification, application and evaluation of improved production practices

(THAY76; MCCA77; STAN77; DONA8O; WILL76; BAKE77).

1-1

These efforts have culminated in the practical development of methodologies

referred to as MPP. These include the structured programmning of Dijkstra, as
formalized by a number of interpreters; managerial approaches such as those
developed by IBM or described by Weinberg and Vourdan; coding conventions; and a
variety of software tools, including source code preprocessors, monitors, pre-
compilers, verifiers, program support libraries, etc.

The initial experiences in the use of MPP indicated that many of the
recommended techniques could lead to major reductions in the costs of producing

software for major systems and to a noticeable improvement in the quality of the

software product.

To date, the validation of MPP has been primarily limited to the development

of software systems. The experience gained thus far has been highly favorable.

The development of the PAVE PAWS Phased Array Warning System at Beale AFB,

California and Otis AFB, Massachusetts has presented the unique opportunity to
assess the usefulness of MPP during the development of a major software system

and additionally to evaluate the effects of MPP and software engineering tools on
the 0 & M phase of the software life cycle.

PAVE PAWS was developed using a complete modern programming environment as

described in RADC-TR-79-139 and is believed to be the first such system to use
software engineering tools and methods in an integrated and comprehensive
manner. Studies of the development cycle of PAVE PAWS (RAYT79; CURT8Ob) suggest
that major benefits were derived from the use of MPP and software tools. These
benefits included:

o the control and management visibility required to guide a major software
project to a successful completion and schedule. In particular,
management found the mechanism of the Program Support Library (PSL) to be
of tremendous value as a management information tool;

o the disciplined programming environment of modern programming technology
used on PAVE PAWS measurably improved the transition of software
development from the mysterious and arty to the clear and cohesive world
of software engineering;

1-2

o top-down design and implementation was effective in assuring that all
system functions were accounted for in the software design and assisted
in the tracing of system requirements from the highest level of mission
functions to the lowest component of code produced;

o the commnonality and standardization of coding techniques, naming
conventions, and the uniform presentation accomplished by indented
listings contributed to programmner understanding within and among the
groups established to code major system functions. This coimmonality
enhanced design and code reviews by providing a common frame of reference
for discussion and continuity. Program concepts and structure could be
commnunicated between programmners and offered the greatest improvement to
efficiency and effectiveness.

As stated earlier, it was believed that the tools used for software
development would have an even greater payoff during the 0 & M phase of the
software life cycle. Structured coding, programming conventions, program design
language, top-down design, the program support library, etc., should make
software 0 & M tasks easier, reduce manpower and training requirements, and thus
reduce overall costs.

To form a basis for testing these beliefs, the PAVE PAWS Phased Array Warning
Systems at Otis AFB, Massachusetts and Beale AFB, California were selected with
the intention of evaluating the impact of MPP and software engineering tools on
the system maintenance activities.

1.3 Management Summnary

1.3.1 Purposes of this Study

The primary objectives of this study were to:

(1) Collect, screen and process data from the PAVE PAWS software maintenance
effort.

(2) Compile a computer database of 0 & M data which can serve as a basis for
future software maintenance data collection efforts.

(3) Evaluate the effects of MPP and software engineering tools on the 0 & M
phase of the PAVE PAWS software life cycle.

1-3

h 1.3.2 Summnary of the Study Approach

To accomplish the objectives of this effort, the following tasks were
performed:

(1) The literature was reviewed to identify 0 & M4 activities and data
collection requirements in order to determine the effects of the use of
MPP during development, on the maintenance phase.

(2) Software maintenance data collection forms and procedures were designed.

(3) Interviews were conducted with 0 & M4 personnel at Beale AFB to identify
the benefits and difficulties of utilizing MPP and software engineering
tools in the maintenance environment.

(4) The software maintenance data that was collected by the PAVE PAWS
maintenance staff was screened for accuracy, applicability and
completeness; and was processed and stored in the PAVE PAWS Software
Maintenance Experience Database.

(5) The data collected in 3) and 4) was summarized and analyzed.

This software maintenance data is continuing to be collected by the PAVE PAWS
maintenance staff. The data is transmitted to the Data and Analysis Center for
Software (DACS) establishing a potential resource for more extensive and
conclusive study and analysis.

1-4

SECTION II

PAVE PAWS MAINTENANCE ENVIRONMENT

2.1 Introduction

The delivery of the PAVE PAWS system by the contractor and acceptance by the
U.S. Air Force marked the transfer of responsibility for the PAVE PAWS system and
the initiation of the 0 & M phase of the software life cycle. The PAVE PAWS

System Programmuing Agency (SPA) was the organization specifically created by the
Air Force and given the responsibility for software maintenance. It is the
purpose of this section to provide an organizational description of the SPA and a
summary of the configuration control of software problems.

2.2 PAVE PAWS Maintenance Organization

The following is an extraction from the Organization Description of the SPA:

PAVE PAWS SPA Organizational Description:

o Mission - The SPA mission is to support AN/FPS-115 missile warning system
operations and maintenance activities of all computer software for all
computer systems at all sites.

o The SPA is composed of the following groups:

(a) The SPA staff (AD) - Provides leadership and management for the PAVE
PAWS SPA.

(b) The Programmning branch (ADP) - Provides analysis, design,
development, enhancement and maintenance for all PAVE PAWS software
with the exception of the Scenario Generator, Program Support
Library and miscellaneous support software. It is composed of four
sections organized across subsystem lines. These sections are:

(1) Analysis (ADP/ANL) - Provides immnediate and long-range analysis
of AN/FPS-115 system software effectively. Priority task is
assistance in high-priority error analysis. Ongoing task is in-
depth analysis of total system to improve software reliability,
accuracy, maintainability and availability.

(2) Tactical (ADP/TAC) - Provides design, development, enhancement
and maintenance for all tactical software which includes the
Real Time Monitor, Mission Control, Radar Management,

2-1

Calibration and Performance Monitor, Tracking, and Displays and
Control.

(3) Radar Control (ADP/RDR) - Provides design, development,
enhancement and maintenance of all Radar Control and diagnostic
software. This includes the MODCOMP operating system, the on-
line and off-line diagnostic software, the signal processing
software, and the tactical radar control function.

(4) Operating System (ADP/SYS) - Provides design, development,
enhancement and maintenance for all CYBER system soluware to
include the CYBER operating system, all external comuunlcatlons
(radar controller, displays, communications lines), system
reconfiguration, the displays subsystem, and on-line
diagnostics.

(c) The Quality Assurance Branch (ADQ) - Provides central configuration
control of all PAVE PAWS system software and documentation.
Maintains and controls electronic printed source for all software
under configuration control. Acts as administrative control point
for all software and documentation change actions throughout all
stages of development. (Note: Serves as central point of control
for accepting and processing all discrepancy reports). Provides and
maintains central library of formal system documentation, vendor
publications, and educational and instructional materials. Provides
design, development enhancement and maintenance for all system
support software to include Real Time Simulation, Target Scenario
Generation, Data Reduction, and Program Support Library software.
Also responsible for all non-operational software designed to
support any activity within the system. Responsible for testing all
software prior to release to insure software and system reliability.

The organizational structure of the SPA provides a facility to utilize MPP
and reflects an understanding of their associated management techniques.

The SPA is designed around the Chief Programmer Team concept. The
Programming Branch (ADP) is one chief programmer team, and consists of the four

sections previously described. Each section is organized as a programmiing team,
with the section head equivalent to a lead programmer. ihe branch chief acts as
the chief programmer. Each section (or team) is responsible for a major PAVE
PAWS maintenance component. These responsibilities are aligned with the
Computer Program Configuration Items (CPCI's) of the PAVE PAWS development
requirements, new requirements now that the system is operational, and modern
programing management techniques. Currently ten CPCIs are defined and assigned

as follows:

2-2

o SYS - CPCI 1 -- PAVE PAWS Operating System

o TAC - CPCI 2 -- Tactical Software

o RDR - CPCI 6 -- Radar Control Software

CPCI 7 -- Signal Processor Software

CPCI 8 -- Receiver/Transmitter Test Software

CPCI 9 -- Digital Module Test Station Software

o ANL -- System Analysis

The second chief programmer team (ADQ) is headed by the branch chief. This

team maintains the following CPCIs:

o ADQ - CPCI 3 -- Simulation Software and Target Scenario Generation

CPCI 4 -- Program Support Library Software

CPCI 5 -- Data Reduction Software

CPCI 10 -- Miscellaneous Support Software

In addition to the above CPCIs, the SPA/AD has assigned the ADQ branch the

responsibility for configuration management, testing, reliability and

maintenance change certification. The ADQ branch is assigned the major

responsibility as the "independent test team" for certifying all proposed

changes to the PAVE PAWS software. The ADQ branch is also the "quality assurance

team", responsible for reviewitK all changes and providing a configuration

management control and dissemination point.

The SPA Procedure for Testing by ADQ is:

o After CPT & E is complete, a complete test package is delivered to ADQ.
This package includes: the modified software, the programmer test
sequence, the CP test sequence, and all updated documentation.

o The initial testing by ADQ is done on the backup Cyber in an off-line
mode. ADQ recompiles the CPCI code to be tested along with the
unmodified code and recreate the new CPCI.

o The first phase of testing is a recreation of the PT & E and CPT & E. If
successful, the testing procedure will continue.

o DT & E (development test and evaluation) by ADQ involves the use of
simulation runs against the modified CPCI. Simulation tapes were
generated by the contractors as part of the PAVE PAWS deliverables and in

2-3

some cases have been extended by the SPA staff. AOQ uses these "Sim
tapes" in their DT & E and checks for two things at the end of a run:

- Did the modified software perform properly?

- Was system performance degraded by the modifications?

o If no problems are encountered, the results of the testing, the test
packages, and its documentation are forwarded to HQ SAC for review and
approval.

o Assuming approval by SAC, time is requested on the operational system to
perform operational test-and evaluation (OT & E) which is performed by
the SPA on the operational system. With higher headquarters approval,
the PAVE PAWS operational system is reloaded with the new software.
During OT & E, the operations personnel continue their normal functions
and with the aid of the SPA they attempt to use the functi-ons affected by
the modified software.

o If OT & E is successful, a request for an operational date is forwarded
to higher HQ. Depending on circumstances, the software may be left in
the system and the comunications environment turned on. Alternatively,
they may reload the previous version and return to full operational
status (communications gear turned on).

o After approval by higher HQ, an official release date is established. On
this date, the PAVE PAWS systems at Beale AFB and OTIS AFB will contain
the modified software. Two factors currently require special
consideration in the independent test and evaluation process: time on
the operational system for testing, and manpower resources to carry out
the testing.

o Requests for time on the operational system must be submitted six weeks
in advance. This creates problems for several reasons. All requests for
system modifications are "Critical" depending on who is requesting them.
As a result, the requests for time are made prior to completion of DT &
E. Thus, there is always the possibility that the software won't be
ready when the computer is ready. Also the amount of time requested can
be a factor since it impacts the operational environment. If too much
time is requested, mission schedules are affected. If too little time,
the tests may not be completed.

2.3 PAVE PAWS Maintenance Process Overview

The keys to the PAVE PAWS maintenance process are: 1) how the SPA is
informed of a system problem (or request for enhancement), and 2) the internal
structure that the SPA has created for handling a request once they have been
informed.

2-41

The mechanism for informing the SPA of a problem is the discrepancy report

(OR) and the structure for processing all DRs is the Configuration Review Board

(CRB). The following is a brief description of the DR and CRB as applied to the

PAVE PAWS maintenance process:

o A DR is used to report a suspected error or a system problem and to
request an enhancement to the software source code or documentation;

o A DR may be originated by anyone (the users of the Sixth Missle Warning
Squadlon (6 MWS) or Seventh Mtssle Warning Squadion (7 MWS), the
maintenance staff, higher headquarters, etc.);

o A DR contains a statement of a problem or a request for enhancement;

o When a DR is submitted by a site (6 MWS at Otis or 7 MWS at Beale), a Site
Configuration Review Board (SCRB) reviews the DR prior to forwarding it
to the SPA CRB. All other DRs are forwarded to the SPA directly;

o The SPA CRB meets on a periodic basis (weekly) to review all DRs. New
DRs are reviewed by the CRB, assigned to a SPA branch for analysis and a
suspense date assigned for a "Memo of Recommended Action" (MRA) to be
returned to the CR8. ORs which have been returned to the CR8 by the SPA
division with an MRA, are reviewed by the CRB, and if approved by the
CRB, forwarded to higher headquarters for further action;

o After approval is received by the SPA to proceed with modifications to
satisfy a DR, the CRB assigns the task to the SPA branch responsible for
the changes.

When a SPA branch receives a DR for action, the branch chief assigns the DR

to a section chief. The Individual assigned is reponsible for reviewing all

previous documentation accompanying the DR, making the modifications required to

satisfy the DR, and extensively testing all changes. In addition, he is

responsible for a formal test plan to validate the changes and to update all

documentation affected by the changes. This completes the first step in the

modification process, the Programmer Test and Evaluation (PT & E).

Upon receipt of the above from a programmer, the branch chief is responsible

for the next step, the Chief Programmer Test and Evaluation (CPT & E). Where the

programmer was responsible for module testing and validation, the branch chief

functions as a chief programmer responsible for the integration testing of all

changes. The Chief Programmer Team will load all modified software for a major

system module and repeat not only the programmer test plans, but also all

2-5

simulation testing that applies to the module. If no problems are encountered, a

formalized test plan is created and submitted along with all documentation to the

ADQ branch for independent test and evaluation.

The preparation of a system software release is the responsibility of the ADQ

branch which has the major responsibility for certifying the modifications

before any software release can be considered. Certification in this context

means to assure as close to 100% certainty as is possible, that the modified

software once introduced into the operational system will not only perform as

adve-tised, but will also not detrimentally impact the operational system.

Development Test and Evaluation (DT & E) is the process used by the ADQ branch to

certify a proposed system update. Using the backup hardware of the PAVE PAWS

system, the ADQ creates a new software system containing all changes which have

been incorporated into the proposed release. This candidate system is subjected

to extensive testing which includes a rerun of the PT & E and CPT & E sequences.

In addition, PAVE PAWS simulation runs are made against the candidate system as

well as any operational type tests which ADQ feels are necessary to check out the

candidate system. Only when the candidate system has passed all testing

successfully, will ADQ consider proposing it for Operational Test and Evaluation

(OT & E).

The preparation of OT & E involves not only the SPA but also higher

headquarters (HQ SAC, ADCOM, and NORAD). Within the SPA, the ADQ branch prepares

complete documentation on the proposed release, and forwards a Version Release

Request to HQ SAC/SXMG for approval. (It is important to note that the

preparations and procedures for a proposed system release are quite detailed and

are only summarized here.) OT & E requires that the PAVE PAWS operationai system

be in a non-operational status until it can be verified that the newly introduced

software is functioning properly.

Upon completion of OT & E, PAVE PAWS is returned to its previous operational

state. A final OT & E test report is produced and submitted to HQ SAC/SXMG for

approval. Assuming no problems, SAC will designate a deadstart date/time when

the new system release will become operational.

2-6

- - - -i

2.4 Configuration Control Summnary Description

A DR is used to report known or suspected software and software documentation
problems to the SPA. A DR may be initiated by any person recognizing a
requirement, and all are reviewed by a Conf~igurat ion Review Board for acceptance
or rejection. DR's not rejected will produce an additional series of forms to
further control the actions. These include a Program Modification Request (PMR)
a Program Change Document (PCD), a Program Documentation Discrepancy Report
(PDDR) and a Modification Design and Interface Specification (MD-IS). All man
hours and computer time used by the division in gathering data and performing
initial analysis of the DR is logged on the Project Control (PC) form until the
action is completed and the DR is considered closed.

The following is a brief description of the purpose of these forms /documents:

PMR - Program Modification Request

used to request modifications to computer programs which add, modify or
delete operational capability so as to require specification changes, and/or
provide new programs, and/or provide new systems.

PCD - Program Change Document

used to document program malfunction corrections and data base changes

POOR - Program Documentation Discrepancy Report

used to identify and correct errors in software documentation and to effect
formal changes in software documentation

MDIS - Modification Design & Interface Specification

used to show the proposed design of a software or hardware modification and
its interfaces, if any, with other software or hardware

PC -Project Control Form

used to track the milestones reached and computer and manpower resources used

2-7

SECTION III

DATA COLLECTION

3.1 Methodology

Data Collection was an iterative process influenced by data needs and the

availability of data to satisfy the initial objectives of this study. The steps

performed to collect and transform the data are summnarized below:

1) Reviewed the state-of-the-art in software maintenance to determine the
type of data which must be collected to evaluate the effects of MPP and
SE tools on the software maintenance process.

2) Developed a set of questions which were used to guide IITRI project
personnel during interviews with government maintenance personnel.
These questions served to obtain information related to personal
observations, experiences and opinions of maintenance personnel about
the usefulness of MPP and Software Engineering (SE) tools.

3) Visited the PAVE PAWS SPO at ESD to become acquainted with the current
PAVE PAWS 0 & M environment, including the level of the current data
collection effort.

4) Refined the set of interview questions developed in Step 2.

5) Interviewed PAVE PAWS maintenance personnel, particularly management, to
explain the purpose of the data collection effort, and to determine the
extent which they could cooperate and the availability of data. Obtained
were copies of the following software documentation and data:

o PAVE PAWS source listings (unclassified only)

o Discrepancy Report Data Base (DRDB) output. The DROB is a machine
readable file developed and maintained by the PAVE PAWS maintenance
staff to track each discrepency report (DR) from initiation through
resolution.

o PAVE PAWS software documentation (unclassified), including:

Software System Requirements Specifications

Detailed Design Specifications

User's Manual/Operator's Manual

Problem Reports

Software Version Release Reports

3-1f

6) Developed a set of data collection procedures and forms, including:

o Programmner Experience Profile (PEP) Form

o Computer Program Configuration Group (CPCG) Description Form (CDF)

o CPCG Maintenance Activity Form (CMAF)

7) Coordinated with the maintenance personnel at Beale AFB on the
completion of the PEP form. Reviewed the PEP forms and revised the tool
usage questionnaires.

8) Interviewed maintenance personnel at Beale AFB to determine their
personal observations, experiences and opinions on the use of MPP and SE
tools.

9) Met with the maintenance personnel to explain the purpose of the
Maintenance Activity Form and obtain permission to review the
documentation on each Discrepency Report filed to date and to record the
desired information on the CMAF.

10) Transferred the CPCG/CPC/Segment description and change history data
from the PSL management reports to the PAVE PAWS component description
and change history forms. Transferred the data recorded on the data
collection forms to the data coding forms for input to the PAVE PAWS
Maintenance Experience Database.

3.2 Data Identification

The preparation for the data collection trip to the PAVE PAWS site at Beale

AFB, California consisted of reviewing all available PAVE PAWS documentation and

becoming familiar with the MPP, tools, and techniques that were used in the
development cycle of PAVE PAWS and which were included in the delivery and
acceptance of the PAVE PAWS system by the Air Force.

Upon completion of the above review, a report was generated by IITRI
outlining a data collection and reporting methodology for collecting information
which could be used to relate the quality of the software documentation and
source code, the use of SE tools, and the experience level of maintenance
personnel to the cost of operation and maintaining the PAVE PAWS Phased Array
Warning System.

The scope of this report was limited to those data collection activities
which were believed to be essential to accurately evaluate the effects of MPP and

3-2j

SE tools on the 0 & M phase of the software life cycle. Emphasis was placed on
obtaining the opinions of the PAVE PAWS personnel through interviews. The PAVE
PAWS maintenance staff was also requested to complete a Programmner Experience
Profile questionnaire to determine their experience with MPP and SE tools.

3.2.1 Questionnaire Interview Procedure

The objective of this portion of the data collection effort was to obtain
information concerning the personal observations and opinions of the PAVE PAWS
maintenance staff with respect to MPP, tools and techniques. Previous efforts

have described and reviewed MPP from the development viewpoint and assessed their
value during the construction of a-major system effort. While the information

from these previous efforts was helpful in formulating approaches for the IITRI
data collection effort at Beale, it is important to note that this portion of the
data collection effort by IITRI was concerned with the use of MPP, tools and
techniques by the PAVE PAWS maintenance staff in pursuing their function of
maintaining-the PAVE PAWS software.

The purpose of the data collection effort was to determine: 1) if the PAVE
PAWS maintenance staff continued to use these same MPP, tools and techniques; 2)

the value the maintenance staff assigned to these practices, tools and

techniques; and 3) the contribution of each to benefits realized in the 0 & M
life cycle.

In pursuing the data collection, a heavy reliance was placed on personnel
interviews. The initial portion of each interview was unstructured and involved

general discussions on the segment of PAVE PAWS for which the interviewee(s) had
been assigned responsibility. In this portion of the interview, the PAVE PAWS

segment, its structure as related to MPP, the difficulties and the benefits of
MPP as applied to the PAVE PAWS tasking of the segment, and the overall workload
of the segment was discussed. The second portion of the interview used a
structured approach involving the completion of the questionnaire contained in

the "PAVE PAWS Data Collection Scenario". The data collected in these interviews
is summnarized in Section 4.2.

3-3

3.3 Data Collection (Data Availability)

Based on the analysis performed on the previous section the following data
was collected. The identified data essentially falls into two categories:

1) Data directly applicable to this analysis

2) Data collected for future analysis.

Data collected which falls in the first category is comprised of

o Hardcopy listings of all DR's filed since the maintenance staff became
involved during acceptance testing in October 1979. This data is
obtained from the online DR data base and contains the following
information:

- DR's opened to date
- OR's still open
- closed DR's
- Software Version Release Documentation

o Xerox copies of all available DR's and project control forms.

o Documents describing the organization structure of the maintenance staff
(SPA) and the operating instructions for each of the component
divisions.

0 Personal observations and experiences of maintenance personnel with
respect to the use of MPP and tools for the various CPCIs being
maintained.

o Completed PEP forms for all maintenance personnel employed on-site since
November 1980.

o The following software maintenance packets which describe the attributes
of the modification:

o Program Change Documentation (PCIJ)
o Program Modification Requests (PMR)
o Program Documentation Discrepancy Reports (POOR)

Within the second category the following data was collected:

o Microfiche of the majority of the PAVE PAWS program design language (PDL)
and source code for CPCIs 1 through 6 as originally delivered by the
development contractor.

3-4

o PSL reports by subsystem (CPCG) and program (CPC) as of November 1980 and
August 1981.

- Code progression and durability reports
- Summnary of CPCGs by library
- Summnary of CPCs by CPCG
- Summiary of segments by CPC.

Procedures have been established with the PAVE PAWS SPA to continue
forwarding this information to the DACS periodically for maintenance database
update and follow-on analysis.

3.4 Data Collection Forms

3.4.1 Introduction

A set of software maintenance data collection forms were designed and
utilized to record the PAVE PAWS data collected during this effort. These forms
were designed to identify key data collection areas and be flexible enough to
accommnodate additional data when it becomes available. The first form is the PEP
which is used to describe the experience background of the PAVE PAWS maintenance
personnel. The second form is the CPCG Description Form (COF) which is used to
describe the development environment, constraints, composition and size of a
CPCG (a functionally oriented subsystem) for each CPCI. The third form is the
CPCG Maintenance Activity Form (CMAF) which is used to describe the reason and
nature of each software change and the resources required to implement the
change.

3.4.2 Progranmmer Experience Profile (PEP) Form

The PEP provides background information on the personnel performing the
maintenance of the PAVE PAWS software. This information includes the education
and work experience of the personnel as well as experiences in methods of access,
programmning languages and previous experience on related projects. Specific
information obtained from this form is representative of the experience of the
maintenance personnel with each tool or technique, each programmning language,
each operating system, and each of the specific applications of the softwari for
PAVE PAWS.

3-5

-. 0040-0 . -.. -- '.

This form was filled out once at the beginning of data collection and again

at the end by each analyst/programner. It briefly classifies his/her background.

Examples of a completed PEP and a completed coding form are depicted in

Figures 3.1 and 3.2. The instructions for completing this form along with a

blank form and coding sheet are given in Appendix A.

3.4.3 CPCG Description Form (CDF)

The CPCG Description Form provides information concerning the

characteristics of the PAVE PAWS software at the CPCG level. Information

provided by this form includes CPCI name, special environmental factors and

development constraints, and size of the CPCG including number of CPCs, number of

INCLUDEd Segments, number of source lines of code and number of machine words of

code.

The data on this form is extracted directly from the following hardcopy PSL

management reports: Code Progression/Durability Matrix, Sumary by Program and

Summary by Segments.

Examples of a completed CPCG Description and the associated coding form are

depicted in Figures 3.3 and 3.4. The instructions for completing this form along

with a blank form and coding sheet are given in Appendix A.

A supplementary coding form was designed to record the status of each CPCG at

different points in time. This is called the CPCG Status Coding Form. This form

was utilized to record the CPCG version release history by version

identification, size and the date last change was made. An example of a

completed form is depicted in Figure 3.5.

3.4.4 CPCG Maintenance Activity Form (CMAF)

This form is used to record the maintenance activity performed for each

approved DR. Data is recorded at the CPCG level. When a DR is initiated which

requires software changes to more than one CPCG, additional forms must be

completed. The data provided by this form includes the type of maintenance

3-6

PROGRA MER EXPERIENCE PROFILE

PERSONNEL 10 FLASTNA
UE FIRST LAST OP AGE 34 DATE 19 AUG 81

DROJECT PAVE PAWS JOB TITLE Chief. S/1, Co.fit 1gt.

POSITION 0-3 GROUP (DIVISION) ADO

A. EDUCATION (IN YEARS)

HIGH SCHOOL A YEAR GRADATED_ j5
COLLEGE -T'

OEGREE DEGREE YEAR MAJOR LOCATION
A.A. 1967 MATH Ventura College CA

S.A. 1969 MATH San Clego State, CA

v COPJ7rER SCIENCE COURSES 0 CPUTER SCIENCE CREDIT HOURS

s COMPUTER SCIENCE SEMINARS j TAKEN 0

.OuX EXPERIENCE

YEARS WITH CCMPUTERS 5
Z YEARS IN INDIVIDUAL EFFORT 40

1 YEARS IN TEAM EFFORT 40

YEARS IN SUPERVISORY CAPACITY 0 YRS. YRS.

TARGET LARGUAGE(S) NAME JOVIAL 2

TARGET MACHINE(S) UKM CYBER 2 __

TARGET OPERATING SYSTEMS (NAME) NOS 2

SPECIFIC EXPERIENCE (RESPONSE IN YEARS UNLESS OTHERWISE INDICATED)

1. TECHNIQUES 2. PROGRAMMIING LANGUAGES
STRUCTURED PROGRAMMING 2 JOVIAL

POL 2 ASSEMBLER .

.A1P0 0.L. FORTRAN
TOP-DOWN DEVELOPMENT 2 COBOL

PSL 2 ALGOL

PRE-COMPILERS 2 PL/I

CHIEF PROGRAMIR TEAM 2 PASCAL 0
OTHER j OTHER

3. OPERATING SYSTEMS

MACHINES OPERATING SYSTEMS YRS.

CYBER 174 NETWORK OPERATING SYSTEM _

4. PROGAMMNG APPLICATIOnS (YEARS)
ZUSINESS

SCENTIFIC/MATVEMATICN. I

SYST6 PROGRAIMING

REAL-TIE SYSTMS 0

DATABASE APPLICATIONS I

OTHER (S.PPORT. 4.9.. PSL. DATA 2
REDUCTION. MISC. SUPPORT)

FIGURE 3.1 EXAMPLE OF COMPLETED PROGRAMMER PROFILE

3-7 1

-- l - lW t ~ ~ . ,~ -~.A -

PROGRA?9ER EXPERIENCE PROFILE COOING FORM

PERSONNEL Id F TLSTMA 1-7
NAE I !LAI sTjI mjrII I I~ i l

8 -27

AE 3
_-29

DATE 8 11 018 11 9 30-35
PROJECT V' VE P A, SI 36 'I1I -50

JOB TITL.E'C I E F 6 0WF~r.IT jj AIF ITI 1 1 151-70

POSITION - 71-75

GROUP (DIVISION) A 76-78

EDUCATION COLLEGE R 79

HIGH SCHOOL [jS
YEAR GRADUATED 65 1-2

DEGREE DEGREE YEAR MAJOR

3-11 =
.12-20
21-29

30-31 0 COMPUTER SCIENCE COURSES

32-33 LjQJ # COMPUTER SCIENCE CREDIT HOURS TAKEN

34-35 Ioj # COMPUTER SCIENCE SEMINARS

WORK EXPERIENCE 36-37 T# YEARS WITH COMPUTERS

38-39 % YEARS WITH INDIVIDUAL EFFORT

40-41 [0 -. YEARS IN TEAM EFFORT

42-43 0 % YEARS IN SUPERVISORY CAPACITY

TECHNIQUES LANGUAGES

STRUCTURED PROGRAMMING 1" 44-45 JOVIAL 2 0-61

POL 46-47 ASSEMBLER '... 62 63

HIPO 48-49 FORTRAN 0. 4-65

TOP-DOWN DEVELOPMENT 2 50-51 COBOL . *,6 6 -67

PSL 2 52-53 ALGOL .068-69

PRE-COMPILERS _2 54-55 PL/I 0 70-71

CHIEF PROGRAMMER TEAM 2 5- PASCAL __T 72°73
OTHER t1 58-59 OTHER __ o74-75

PROGRAMMING

APPLICATIONS

BUSINESS 1-2

SCIENTIFIC/MATHEMATICAL 3-4

SYSTEMS PROGRAMMING [Q 5-6

REAL-TIME SYSTEMS Q 7-8

DATABASE APPLICATIONS 0 9-10

OTHERS 2i 11-12

OPERATING

MACHINES SYSTEM YEARS

13-28c

29-44 -
45-60

FIGURE 3.2 EXAMPLE OF COMPLETED "PEP" CODING FORM

3-8

CPCG DESCRIPTION FORM

PSL Date: 14 August 1981

Library Level: ALL

Data Source: PRG

Software Identification:

CPCI PTAC CPCG C01MM

Special Environmental Factors of the Component:

a) Special Display Y h) Concurrent Development

of ADP Hardware Y

b) Detailed Operational Re-
quirements Definition y i) Time Sharing (vs Batch)

c) Change to Operational j) Developer Using Separate
Requirements N Facility N

d) Real Time Operation Y k) Development on Opera-
tional site N

e) CPU Memory Constraint y 1) Development on other
than Target System N

f) CPU Time Constraint Y m) Development at more
than one site N

g) First S/W Developed

on CPU N n) Programmer Access to
Computer Y

General Program Information:

Number of CPCs 15

Number of Segments 281

Number, of Source Lines

Number of Machine Words 7971

FIGURE 3.3 EXAMPLE OF COMPLETED CPCG DESCRIPTION FORM

43-9

- ., - .- .

CPCG DESCRIPTION CODING FORM

SOFTWARE IDENTIFICATION CPCI / P II A IC 1- 4

CPCG r n I 1 5-13

SPECIAL ENVIRONMENTAL FACTORS

SPECIAL DISPLAY 'Y 14

DETAILED OPERATIONAL REQUIREMENTS DEFINITION Y' 15

CHANGE TO OPERATIONAL REQUIREMENTS N 16

REAL TIME OPERATION y 17
CPU MEMORY CONSTRAINT y 18

CPU TIME CONSTRAINT Y 19
FIRST S/W DEVELOPED ON CPU N 20

CONCURRENT DEVELOPMENT OF ADP HARDWARE y 21

TIME SHARING (vs BATCH) N 22

0 DEVELOPER USING SEPARATE FACILITY N 23
DEVELOPMENT ON OPERATIONAL SITE N 24

DEVELOPMENT ON OTHER THAN TARGET SYSTEM N 25

PROGRAM4ER ACCESS TO COMPUTER Y 26

PROGRAM SUPPORT LIBRARY DA(A

PSL DATE LEVEL DATA SOURCE NUMBER OF NUMBER OF SOURCE SIZE OBJECT SIZE
PROGRAMS SEGMENTS

27-32 33-35 36-38 39-41 42-45 46-51 52-57

FIGURE 3.4 EXAMPLE OF COMPLETED CDF FORM

CPCG STATUS CODING FORM

CPCG 1-4 PSL DATE 5-10

CODE PROGRESSION

PRG VN CPT VN INT VN FIX VN TST VN FRZ VN DEL VN

o 10393111 1101214 102 F001914 E O 10191D110101 0194i 7100 o 94111 1 1 4 lA 2

11-17 18-24 25-31 32-38 39-45 46-52 53-59
CODE DURABILITY

PRG 60-66 CPT 67-73 INT 74-80 FIX 81-87 TST 88-94 FTZ 95-101 DEL 102-108

J4 41010 1 1 1 4 du i o0o 0 o I a 1 11

109-114 115-120 121-126 127-132 133-138 139-144 145-150

FIGURE 3.5 EXAMPLE OF COMPLETED CPCG STATUS CODING FORM

activity being performed, the precision of the design specifications for that
activity, and the complexity of the maintenance activity. Also provided is data

concerning how the error was detected and the effort involved in diagnosing it,

the reason and nature for a change in the software, and the effort required in

each phase of the maintenance to make the change or correction in the software.

This form is a vehicle for summnarizing the relevent maintenance activity data
contained in the assorted documentation (PCDs, PMRs, t4DISs, PDDRs, PCs, DRDB
listing) associated with each DR in each of the PAVE PAWS software version
release:,.

Examples of a completed CPCG Maintenance Activity Form and the associated
coding form are depicted in Figures 3.6 and 3.7.

3.5 Data Processing and Summnarization

One of the most critical and time consuming functions of the data analysis
procedure was that of processing the raw data to assure that the data was valid,

accurate, meaningful, and in a form suitable for analysis.

The first step in the validation of the data was to review the documentation

associated with each DR to make sure all forms required by the PAVE PAWS
configuration management staff were included and that the appropriate fields had
been filled out. Irn addition, the documentation for each Software Version
Release which incorporated the modified software was reviewed to determine if all
related deficiency reports anid supporting data were received.

Procedures were established for processing the collected data depending upon
the form in which it was received. Where the data was contained on non-standard
forms, the data was first summnarized onto the three standard maintenance data
collection forms. These forms were revised several times during the data
collection effort to reflect the availability and form of the data. After the
data was summnarized and validated, it was transcribed onto standardized coding

sheets which were formatted for each type of form. The data was then entered
into the data base.

3-12

ON# 80493 CONPOENT RINzeNNOIC ACTIVITY PORN DAT 7 Nrinnpr 19M0

ILOC4tiol Of Activity Cyco PTAC cpc. TRCX........ c.sipos OUT
Aaioc Type: Errlor correctie ~ Add CamasI ity 2 forsies Belowes B5

Dslete Cpaility _______ ptleiz/CdEscAW

Brief Descriptionl Of Cibsag to be a" A check was Ant inctaila tn daa
was on its ascent or descent resulting in impa~ct ordft n nrdnatac himi4.g
inaccurate.

Specification Preision: very Precise X Frecise _____ Improcise ____

Sile Of Choi"e: Source Code Lines _T Object Code Instructios_______
Urgency of Minteance Activity (4) U
Complexity of mintenance ACtivi ty: Very Compex ____ Cmlex Melvi $h____old X

Vey Sile____

SECTION AJ Cmpete if Mintenance Activity ws for Error Correction

HIAM OF INITIAL. DETECTON - .' oply for corrections (not No PeAs.)
- MeWe tihes one category my be o' 'va

-___A. ft"d Procesil r4 4. Interrupt Crver (Cooe ____ 1. Error Messge
bl. Peronal Ca=icstlop ____ Incorrect Dotiet or Itasolt 0. Code Review __

___ . Infinfte LOO ___f. misig outpet 4. Deaoitle eies
k . "biateace cisessceck (as a result of a chlep io ~~ software) J. Special Seug cede -

1. Otheor. Osecrite__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

EFFORT IN DIMIN TME 9=n Do0 not leclikde effort Spent in Initiai detection

a. Me. of OwlS to Diagnose is asedl Cpter Tims ('"eWAN) - Received ___

b. Wlorking Time to Diegesee: Deys _ Moore - Amalysis Segies
c. No. of Linn of Code: Added _ Deleted _ Corrected _ Project Opens _

s_ . milieoergretegiam -__ . Soocifled, Interface Not - J. Daft sop Errer o6. operator Err
of Spec. tiepltd Correctly _ k. Comptational Error __ p. Des to Prior

b. Incorrect Sec. ___ f. Softwrd, Interface -1_ . Dase 11 Error fdlaGtes
t. IeclOOU Secm. - 1. Mrsreo Inerface ___. Logic Crrer -4 ava Pat Fows.
4. Specified Function Met ___h. Voeting System __ s.kraa UeMSeiitn

Imemnted Correctiy i. Soggper, Softwre A.Daer -Dr.finitionisi

SECTION I CleIt* if Mistesc Activity was to make a Cho"lg.__________

NATUE OFCKAN No MIRO - clohse wich apply

a. Docm.etation 4I. ___Structural A.-_ Mission a _iHardware
(Preface or Cte) e.L: Aigorithmic b.__ Enginegring Ilel A_ Oher. (Elain

5. -F_ ix Instruaction f.-_ lOler. oElains. Sfwr ol tto
c. _ Chanes Coeltmots

ENRONs CONNECTION ADED~ gY "WI AXODTATIO it:__

ZZI Meistesece Effgrt Reqilred for Cape or Correction

STG ATE *9Usme. MOMl CPU TINE PLU~mIE to
Received Pormirged Mnegit Analyst Programmer Clerical

1 3esign Effort

Coding Effort
nit eto sting g
Jnotakn 35 I 2
Testiog Review

tecoro Rours to "earest tath~ of A" hear PCD80075

FIGURE 3.6 EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY FORM

3-13

MAINTENANCE ACTIVITY CODING FORM

1-5 oR#l1i4191 DATE 80 t1 t L7 6-11

CPCI T A 12-15

C RC Gf 1 16-19

CPC/SEGMENT dBIJ 1 20 -241LEAVE BLANK IF MORE THAN
ONE CPC)

25 MAINTENANCE TYPEg 26 VERSION RELEASE M29-30
27 28

SPECIFICATION PRECISION p 31-32

URGENCY OF MAINTENANCEJL. 33 INTEGERS - RIGHT JUSTIFIED

COMPLEXITY OF MAINTENANCEL _ 34-35 ALPHABETIC - LEFT JUSTIFIED

W36-37
MEANS OF INITIAL DETECTION 38-39

PROGRAMMER ASSIGNED N 1 40-46

EFFORT TO CHANGE 47-50 r[0E|] 51-54

MANHOURS COMPUTER HOUR5, TENTHS

NO. OF FILES AFFECTED 55-57

ERROR SOURCE NATURE NEW RE-
OF CHANGE OUIREMENT

58-59 64-65 70-7'6 0- 6 1 MOO 66-67 72-73

6Z-63 P 68-69 74-75

ADDED
DELETED

DR # 1-5 CHANGED 6 FILE NAME AFFECTED 7-80
~A D- 4 9 3 F2 O1- N TI.rIE IN 0 . NIO I S E

FIGURE 3.7 EXAMPLE OF A COMPLETED CPCG MAINTENANCE ACTIVITY CODING FORM

3-14

Some problems were encountered during the processing of the data which
restricted the amount of analysis which could be performed. The number of
available DR forms completed by the maintenance staff did not agree with the
number of DR entries within the DR data base. Also, the effort expenditure shown
on the Project Control (PC) was not broken down into distinct maintenance phases

i.e. time to detection, corrective design and analysis etc. The PSL data could
not be used due to the lack of traceability of specific maintenance actions
(resolved DR's).

There were approximately 1180 DR's submitted by the 0 & M staff (covering the
period from November 1979 through September 1981) which required action on the
part of the SPA. Of the 1180 DRs, 402 (over 34%) were rejected after analysis for
the following reasons:

o No error
o Inadequate data collected at time of failure to determine the cause
o Duplicate DR
o Request for enhancement not currently needed
o Inadequate manpower resources available
0 Inadequate computer resources available
o User misuse of the system

As of September 1981, a total of 201 DRs had been resolved; 577 were still
open and were in the process of being resolved by the maintenance staff. Of the
201 resolved DRs, there were only 56 packets which contained complete or near
complete PCD and/or PMR and PC data. The results of the analysis of these 56
maintenance packets are included in Section 4.3 of this report.

3.6 PAVE PAWS Maintenance Data Base

The data base was developed so that it could be used for the two major
functions of:

o Supporting the analysis requirements for this proposed effort.

o Serving as the basis for the development of a large, multiproject
collection of software maintenance data which will be managed and
further expanded by the DACS.

3-15

The design and compilation of the database considered both requirements.
Since the database will be used to support future study and analysis of the
software 0 & M process, it was essential that all available data concerning 0 & M
be included. It was also essential that the database design anticipate the
requirements of future 0 & M data analysis efforts.

This data base is comprised of seven sequential files. Each file is in a
form which is compatible with Honeywell's commnerical Data Base Management System

(DBMS), MDQS. It can be readily adapted to MDQS which is currently available on
the RADC H6180 computer system. All that must be done is to develop the high

level interface software (data definitions and data dictionaries) for each of the
sequential files. File/record descriptions are contained in Appendix B of this

report.

3-16

FILE NAME DESCRIPTION DATA SOURCE

PPPEP Programmer Experience Profile File PEP

PPDRH Discrepancy Report History File DRDB

PPMAF Maintenance Activity File CMAF/SVR/DRDB

PPCDF CPCG Description File CDF/PSL

PPCSF CPCG Status File CDF/PSL

PPPCH CPC Change History File CDF/PSL

PPSCH Segment Change History File CDF/PSL

FIGURE 3.8 DATABASE FILES

SECTION IV

STUDY RESULTS

4.1 Introduction

This section of the report contains the results of the analysis of the
information collected. The purpose of this analysis is to determine the effects
of the use of MPPs and SE tools on the 0 & M phase of the software life cycle.
The amount of information analysis which could be performed was very dependent

upon the quantity and quality of the input data. The first subsection presents
the results of interviews and surveys with the PAVE PAWS maintenance staff as
outlined in Section 3.2. The results of the analysis of the empirical data is
then discussed.

4.2 Summnary of PAVE PAWS Maintenance Personnel Interviews

MPP is a general term encompassing a vari-ety of procedures, standards,
programuing and design techniques which are considered to improve software
development. Some of these techniques are Top-Down Structured Programmning,
Chief Programming Team and others. These are considered to improve software by
making it readable to other programmers, easier to understand and debug, and
helping to standardize the development process.

SE Tools are those tools used in the practical and methodical application of
science and technology in the design, development, evaluation, and maintenance
of computer software over its life cycle. These tools include specific charts
and diagrams which aid in the design and development of software, and PSLs which
aid in the development, evaluation, and maintenance of software. SE Tools can
also assist the programmier in using a greater variety of Modern Programming
Techniques with greater ease.

In the following sections, the data obtained in the personnel interviews of
PAVE PAWS staff has been organized and presented by subject corresponding to the
following MPP, tool or technique:

4-1

o Top-Down Program Development

o Chief Programmer Team/Librarian

o Structured Programming (SP)

o Structured Walkthrough and Reviews

o Independent Quality Assurance/Testing

o Program Support Library (PSL)

o HIPO Charts

o Program Design Language (PDL)

o Precompilers

4.2.1 Top-Down Program Development

Top-Down Design and Program Development is a technique employed it, the design
stages of a project which implies an ordering to the sequence of decisions which
have to be made in the decomposition of a software system. Essentially, the

effort is examined in the most general form first, followed by stepwise
refinements which allow for a better understanding of the general requirements of
the project before tasks and problems need to be examined.

In the PAVE PAWS maintenance environment, the Top-Down approach considered

two areas of activity: 1) maintenance of software designed using the Top-Down

approach, and 2) the generation of new software.

All personnel were familiar with the Top-Down concepts, having been exposed

to it either through previous experience, education (college or technical
school), or Air Force training programs. Without exception, the PAVE. PAWS staff
felt that the use of the Top-Down approach during the generation of the original

software contributed to the maintenance process by 1) making it easier to detect

and find errors, 2) reducing the time required to find the error, and 3)
contributing to the ease of program modification to correct the software. Where
maintenance required the generation of software to either correct an error
condition or enhance the system, the staff felt that the Top-Down approach
greatly aided the modification process.

4-2

4.2.2 Chief Progranmmer Team/Librarian

This technique involves the concept of division of labor among the project

members responsible for code development. Three key individuals are required.

They are:

a. The Chief Programmer, who is responsible for overseeing and coordinating
the code development and producing the critical nucleus of the project;

b.The Backup Programmner who is familiar with all aspects of the system and
contributes significant portions of the code;

c. The Librarian who is responsible for maintaining the status of the
program and the test data, updating the source and test data, performing
the compilations and test runs, and coordinating the documentation.

The Chief Programmer Team (CPT) concept is the basis for all software
maintenance activity in the PAVE PAWS environment. The interviews with the PAVE
PAWS staff indicated a firm commnitment to the concept and the employment of the

concept in designing the organizational structure of the SPA as well as the
working formats of each SPA Division. In the past, the CPT concept has been
interpreted by some as destroying individual initiative because the concept
ignores the human factor in favor of a finely detailed, regimented, controllable

structure where the product was produced at the expense of individual creativity.
This is not the case with the PAVE PAWS organization. The positive

interpretation of the CPT concept is the pooling of the team talent to accomplish
tasks. In this approach, all team members are contributing their technical and

management abilities. Design work, problem solving and code production tasks are
assigned by the SPA/AD and/or the CR8 to specific SPA Divisions based on the
Division's area of responsibility. Within the Division, the Division Chief
functions as a Chief Programmer in assigning the work to a section head, who
performs the function of a lead programmer, or Backup Programmer, for the
specific section. In the accomplishment of specific tasks, all team members
contribute as needed. The team serves as a talent pool. This does not mean that
the individual assigned a task is not responsible for its accomplishment. On the
contrary, the individual has the total responsibility for the task's
accomplishment.

4-3

Within the PAVE PAWS structure, the observed difference is that the team
members work together. Depending on the problem to be solved, the solution may

require the resources of one or two team members or the entire team. In all

cases, the work produced is reviewed by another team member. Even though this is
mandated by SPA Operating Instructions, it was found that the team members prefer
this approach because it contributes to a better product. Team members also felt
that they benefited from the pooling of talent and the reviews. Their exposure

to the ideas and critiques of other team members increased their skills and
allowed them to produce better products.

Within the Divisions, the duties of each individual are well defined. Each

division, as well as the entire SPA, knows the steps required for system
maintenance. From the time a problem or a request for enhancement is received by
the SPA, to the time that the problem is resolved, each member is aware of his

individual responsibilities in the maintenance and his contribution to the
overall maintenance process.

As with any organization faced with a maintenance project of the magnitude of
PAVE PAWS, the allocation and use of resources is critical to the project's
success. The PAVE PAWS maintenance personnel feel that the CPT concept is a very
positive factor. The benefits derived from this concept as seen by the PAVE PAWS
personnel are:

o Excellent working environment.

0 In an area where resources are limited, the CPT concept makes the best
use of the available resources.

o Compared to the past experience of PAVE PAWS maintenance personnel, the
amount of effort required for a maintenance modification is reduced.

o Because of the CPT approach, the maintenance staff feels that there is
less recoding, retesting and errors found in the products produced by the
PAVE PAWS maintenance organization.

In the above, it may be noted that the concept of a project Librarian was not
discussed. At the time of the data collection effort, manpower limitations
prevented the assignment of an individual as a Librarian. Currently, the
Librarian responsibilities are supported by team members and the ADQ.

4-4 4

The SPA staff feels that the addition of a Librarian to the PAVE PAWS project is a

priority item.

4.2.3 Structured Programming

SP is basically a set of standards for organizing the control structure of a

set of computer programs where:

a. Each program segment has only one entry and one exit point.

b. Only three basic control structures are needed: Do-While, If-Then-Else,
and Sequence.

c. These basic constructs are augmented with the following practices:
Hierarchial and modular block structures, module size limits, indented
code, and meaningful variable names.

SP is viewed by the PAVE PAWS staff as one of the more important techniques

in the maintenance process. While other practices or tools benefit some specific

0 & M activities more than others, SP benefits most 0 & M activities in that SP

contributes to the enhancement of the software quality factors of traceability,

consistency, simplicity, modularily, self-decriptiveness and expandability. In

the maintenance process, the PAVE PAWS staff feels that SP makes it easier to

find and correct errors. In addition, the staff felt that SP reduces the effort

needed to implement the modification.

The PAVE PAWS staff was asked to rate the characteristics of SP and their

contribution to the maintenance process. The following characteristics were

rated highly:

o Indented Code

o Absence of GOTO's

o Modular Programming

o Simpllctiy of Programuming Style

o Enhanced Readability of Code

4-5

They also felt that SP aided changeability and maintainability, simplified

the testing process, and improved accountability. The only complaint was the

size of a program module. They felt that a rule that limited a module to one

computer listing page (50-55 lines of source code) could be too restrictive in

some cases and could create some confusion for someone reviewing the code if a

function were spread over two software modules. PAVE PAWS guidelines are 50-55

lines per module with an in-house procedure available should a larger module size

be required.

In the maintenance environment, SP is used for all languages including

Jovial, Fortran, and Assembly. Where pre-compilers exist, all code is structured

following SP practices--with no deviations permitted. Even if the computer does
not have a pre-compiler, the concepts are employed in the generation of new code

and the modification of existing code.

4.2.4 Structured Walkthrough and Reviews

Design Walk, rough and Review

This te-,inique is employed primarily after a design is fairly complete and

involves a meeting between the user and various members of the project, where a

review of a proposal modification is examined for technical rather than

managerial purposes. The review is formal and multidisciplinary in nature and

often involves hypothetical inputs.

Code Walkthrough and Reviews

This technique is employed during and after the actual code production and

involves a meeting between the various project personnel. Like the design

walkthrough, this review is primarily technical rather than managerial in nature

and is concerned with error detection and not necessarily correction, which takes

place after the walkthrough. Hypothetical input is often used, and errors
discovered by this technique can be corrected before computer time is used,

realizing a cost reduction.

4-6 i

In the PAVE PAWS maintenance environment the overriding concern is to
maximize the uptime of the operational system. Even with resources like a backup
computer, any potential modification must undergo extensive review prior to
changing the operational system. If a modification is needed, it must be correct
and complete when it is initially introduced into the operational system. The
first step in the validation process of any potential modification is the
"Walkthrough and Review".

After receipt of a DR by the Configuration Review Board (CRB), each step of

the maintenance process is subject to review.

The PAVE PAWS staff feels that Walkthroughs and Reviews are an absolute
necessity. Regardless of whether they are formal reviews involving the CRB on
Division Walkthroughs and Reviews of a proposed design change or an actual code

modification, each step is subject to review by the SPA, not only by a formal
procedure but in fact by staff preference. The staff is divided on whether or
not there is a conflict between timely production and proper maintainability.
However, the entire staff feels that the correctness of any change is the primary
concern. One staff member put it this way: "It is better to be right the first
time and any process that gets me there is worth the time". From the staff

commnents, they feel that walkthroughs and reviews provide more than the obvious

benefit of correctness. The pooling of talent, in a formal or informal review,

produces a better product and increases the capabilities of the participants.

4.2.5 Independent Quality Assurance/Testing

The ADQ has the responsibility for the independent test and verification of

all proposed modifications to the PAVE PAWS software. ADQ has the prime
responsibility for insuring that proposed modifications to the PAVE PAWS System

perform as expected. In this role, ADQ acts as both "indepepdent test and
analysis group" and the "quality assurance group".

The Independent Testing Group is a project group within ADQ and is not
involved with the design or implementation phase of the change. They are
responsible for testing the proposed software release's accuracy, and designing

tests to do this. Since the group is not involved in the design or the

4-7

development of the change, the tests produced are objective and complete in
scop~e, programmning time is not consumed, and more thorough testing can be
accomplished-in a shorter period of time.

A separate ADQ testing activity causes sections to prepare better and more
complete products because they are aware that ADQ reviews everything in detail
prior to commnitting time for DT & E. The following conmment was made by AD and
other Branch personnel, "We know that ADQ is going to check for completeness and
accuracy, so we might as well do it right the first time". ADQ's basic
philosophy compliments the attitude of the rest of the SPA in approaching
independent testing, "Assume nothing works until ADQ proves it to itself".

The Independent Quality Assurance Group is responsible for planning a
systematic pattern of all the action to be taken to insure that the product
conforms to the user's requirements. The efforts of the Independent Testing
Group fall under the supervision of this group, in addition to the testing of the
design and completed system. The independence of this group from the actual
design and development phases assures the same objectiveness and completeness as
the Independent Testing Group.

The ADO provides central confi,uration control of all PAVE PAWS system
software and documentation. It maintains and controls electronic and printed
source for all software under configuration control. ADQ acts as adinistrative
control point for all software and documentation change actions throughout all
stages of maintenance. ADQ provides and maintains a central library of formal

system documentation, vendor publications, and educational and instructional
materials. In addition, they develop and maintain all system support software
including Real Time Siu ulation, Target Scenario Generation, Data Reduction, and
PSL software.

Within the quality assurance cycle, the ADO assures the accuracy and
completeness of all proposed and finalized modifications to the PAVE PAWS system.
From the SPA management standpoint, this configuration control and quality
assurance are felt to be critical. The assignment of the ADO as the focal point
for quality assurance reflects management's view of the importance of quality
assurance. Complimenting this view, the SPA staff feels that the

4-8

benefits received more than compensate for any additional effort required and
they willingly support the quality assurance process.

4.2.6 Program Support Library

The PSL is a programuiing tool designed to provide extensive data collection

and reporting capabilities for use by management in making timely assessments of

statu~s, specifically on error correction and changes being made to the PAVE PAWS

software. In addition, the PSL was designed to support and enforce Top-Down
Structured Design techniques and support an orderly progression of software from

a development environment through integration and test to a delivered product.

Of all the tools used by the PAVE PAWS staff, the PSL is considered by
management to be the most valuable. In an environment where configuration
control is a necessity, the PSL provides some of the most essential ingredients
requir-ed for management and control. The PSL is used for compilation, testing
and as a code control mechanism. For Jovial source code, the PSL is the frontend
mechanism for utilizing the software. Because of this, management is able to
track this software at all times.

Some of the programmners did not like the requirement to use the PSL, and felt

that it slowed down the maintenance process and increased the effort. However,

they also expressed certain positive aspects, such as availability of copies of

the previous source code, current software status, software development level,
compilation and load streams, etc.

Currently, the source code for the ?4ODCOMP computers is also maintained in

the PSL on the Cyber. This requires the modification of the source language
using the PSL on the Cyber, the creation of magnetic tapes containing the
modified software, and the transfer of the tapes to the MOOCOMP computer where

the actual compilations, loads and testing are done. It seems reasonable that

the extra steps required in this process would produce negative conmments by the

SPA staff involved. The unexpected commient from these same ADQ people is, "We
like the PSL and its capabilities. We would prefer that the MODCOMP have its own
version of the PSL and eliminate the software transfer currently needed".

4-9

Overall, while the PSL is considered a good product by the PAVE PAWS staff,

there are several areas of the PSL which they feel could be better. The PSL

documentation, particularly the user's manual, is considered poor. The user's

manual shows how to transition software up and down the various levels of

development (i.e. PRG, CPT, INT, FIX, TST, FRZ, DEL); to modify, compile and load

a software module; and request a listing (Report) of the status of all modules in

the PSL. However, the staff feel that additional useful reports are available

based upon other undocumentated input parameters used by the PSL as part of the

above processes. In the user manual, there is no indication of how to produce

additional reports other than the library program segment summary statistics and

the code progression/durability reports. The documentation required for the

PSL, which would allow the staff to add capabilities to the reporting process, is

non-existent and they feel that they would have to list and laboriously review

the PSL source to make any modifications.

4.2.7 HIPO Charts

HIPO Charts consist of Hierarchy Charts, a set of blocks, similar to an

organization chart, showing each function and its division into subdivisions and

the corresponding input-process-output charts, which show the inputs and outputs

and the processes joining them. Since these diagrams are visual, they are easier

to understand then narrative documentation, contributing to both design and

documentation and aiding code production.

All discussions with the PAVE PAWS staff regarding HIPO charts produced the

following response, "What are they". Of all the documentation produced on the

PAVE PAWS system, HIPO's have the least, if any, use to the maintenance staff.

Their major criticisms of the provided HIPO's fall into two categories; they

don't go far enough to define software structure and control flow, and they are

unclear.

HIPO's do exist in the "A" and "B" Spec documentation and sometimes in the

"C" Specs. For HIPO's to be useful for maintenance purposes they must start at

the highest level and proceed to the PDL and code levels. They must show the

downward progression clearly and provide an upward referencing capability. A

significant observation by the PAVE PAWS staff was made concerning the contents

4-10

of HIPO's. They feel that the original HIPO's were generated to show the

direction in which the software and system development would proceed. The key to

this statement is the words "development" and "would". In the maintenance

process, a HIPO only has importance if it relates the level and functional

category of the software to a specific CPCI/CPCG/CPC. While intent is helpful,

specifics are required when tracking a problem through the system. The contents

of HIPO's with better and clearer verbiage, a more concise titling approach which

would allow a viewer to determine the HIPO's position in the system structure,

and the inclusion of specific references to CPCG's, overlays, programs and CPC's

are needed for HIPO's to be of use to the maintenance environment.

4.2.8 Program Design Language

The PDL is a design tool used to communicate the concept of the software

design in necessary detail, using a form of formal, structured English, and is

implemented as a separate language in the PAVE PAWS PSL.

The use of PDL is an area which has caused much reflection by the PAVE PAWS

maintenance staff. As with HIPO's, PDL is a product which exists in two

environments; development and maintenance. When creating new software or

modifying existing software, a PDL is a very useful tool in specifying the

software to be created. In the maintenance environment, emphasis is placed on

finding a specific location in the software where maintenance needs to be

performed. The PDL can be helpful in finding a problem location; but to be
helpful, it must be up-to-date. If there is not a one-to-one relationship

between the code and the PDL, the effectiveness of the PDL is considerably

diminished. PDL existing as an entity separate from the source code slows the

tracking process. The PAVE PAWS staff feels that the PDL would be more useful if

it were contained in-line with the source code. They feel that would reduce the

time required to find a problem and make it easier to specify a solution.

There was one additional comment by the PAVE PAWS staff which they felt was

very important regarding PDL, "PDL is not a substitute for good commenting within

a source listing". They felt that PDL is a guide, a good design tool and an

effective mechanism in the creation of software. However, when software is being

4-11tV

reviewed for correction or possible extension, good commenting is required to

better understand the function of software statements.

4.2.9 Precompilers

The precompilers used in PAVE PAWS were designed to translate Structured

Programs into compiler compatible statements. This enabled the use of certain

constructs, not available in the JOVIAL and FORTRAN languages, to be implemented

in the development of the software and the production of code which is structured

but not necessarily compiler-compatible.

The PAVE PAWS staff do not feel that the mere existence of a precompiler

insures better code or reduces the time required for maintenance activities.

Having the precompiler permits the use of structured programing concepts which

they feel do contribute to a better product and reduce maintenance time. The

advantages of having the precompiler that were cited by the PAVE PAWS staff are:

o Ease of Programming

o Structured Code

o Indented Listings

o Less Experienced Programmers Produce Better Code

o Consistency in the Software being Maintained

Staff members at all programming experience levels prefer the structured

approach to coding permitted by a precompiler. Without exception, they felt that

the use of the precompiler substantially contributes to maintenance and in

particular supports path analysis, ease of code segmentation and software.

4.3 Empirical Data Sumary

This subsection contains a short description of the processing of the

software DR's; the contents of the DR's recorded by the PAVE PAWS maintenance

staff from November 1979 through September 1981; and an analysis of the PAVE PAWS

error data.

4-12

4.3.1 Introduction

As of September 1981, 577 (49% of the total) ORs were still open and in the
process of being resolved by the maintenance staff. Of the 201 (17%) DRs which
had been resolved, approximately 55% (110) were for system enhancements (such as

adding a new capability or refining a display format) and 45% (90) were for error
correction, either to the documentation, source code or system specifications.

Responsibility for software maintenance has been delegated to five different

sections as described in Section II, PAVE PAWS Maintenance Organization.

The distribution of DRs by responsible section is depicted in Table 4.1.

TABLE 4.1 DR DISTRIBUTION

RESPONSIBLE #DR's #DR's #DR's #DR's
SECTION GENERATED ACCEPTED RESOLVED OPEN

SYSTEM 124 87 19 68
TACTICAL 699 460 95 365
RADAR 164 115 46 69
ANALYSIS 49 37 10 27
QUALITY ASSURANCE 144 79 31 48

1180 778 201 577

Table 4.2 contains information on the assigned CPC~Is per section of the PAVE
PAWS maintenance staff.

4-13

TABLE 4.2 CPCI ASSIGNMENTS

RESPONSIBLE CPCI ACRONYM LONG-NAME
SECTION

o SYSTEM 1 PPOS PAVE PAWS Operating System
o TACTICAL 2 PTAC TACTICAL SOFTWARE
o RADAR 6 PRCL RADAR Control Software

7 Signal Processor Software
8 Receiver/Transmitter Test Soft.
9 Deptol Module Test Station Soft.

o ANALYSIS System Analysis
o QUALITY 3 PSIM Simulation & Target Scenario

ASSURANCE Generation
4 PPSL Program Support Library
5 PDTR Data Reduction

10 Miscellaneous Support

4.3.2 Maintenance Forms Generation Procedure

4.3.2.1 Maintenance Packets

A maintenance packet is a set of documents and forms used by the PAVE PAWS

staff to record and track changes to the software and consists of the DR, PMR,

the PCD, and the PC (see Section 2.4). Only those empirical data for which a

fairly complete packet was received were examined. This included approximately

56 packets that contained complete or near complete DR, PCD and/or PMR and PC

forms, and, another 28 that contained less complete information which included

the DR and PC data. The first mentioned packets were required to trace a

suspected or known error through its maintenance cycle to the final closing of

the DR. The 2nd packet is used for some analysis correlation. This number does

not represent the entire number of accepted DR's and subsequent maintenance

actions but one can gain valuable insight into an analysis of maintenance

activities overall.

Those data that are being utilized for analysis are distributed over CPCI's

as shown in Table 4.3.

TABLE 4.3 Distribution of Maintenance Packets Examined

CPCI # PCD/PMR FORMS # DR/PC FORMS

PPOS 1 6 5
PTAC 2 22 22
PRCL 6 28 1
TOTAL

4-14

_____ ____ _____ ___

4.3.3 Data Distributions

This subsection summarizes the data from the Maintenance Packets and

includes narrative and tabular descriptions of changes by type and manhours

expended, manhours by change, distribution of lines of code produced, error
distribution with respect to means of detection, and error distribution with

respect to error source. Tables presented illustrate the effort required for

error correction and enhancement for each Computer Program Configuration Item

(CPCI).

4.3.3.1 Productivity Data

Table 4.4 contains data on the number of software changes that were made,
where manhours expended for making the change were provided. A change is defined

as any maintenance action that was performed on the system and is comprised of

one of the following:

o error correction

o enhancement

o documentation correction

Using the data from Table 4.4, the average number of manhours per change and

the average number of changes per 100 manhours were calculated and are

illustrated in Table 4.5.

Of the total 1710 manhours recorded, almost 50% of the time was spent making

changes to PTAC, the Tactical Software. But this CPCI only accounted for

approximately 30% of the total number of changes. Also for this CPCI, the

average number of manhours for correcting an error was very close to the average
number of manhours for implementing an enhancement (67 vs. 50, respectively);

whereas, for CPCI 1, the PPOS, the difference in manhours was much greater (20

vs. 93).

The reason that the manhours expended in error correction in PTAC (CPCI 2) is

considerably larger than the other two CPCI's was examined. The data shows that

4-15

TABLE 4.4 CHANGES BY TYPE AND MANHOURS EXPENDED

ChangesManhours
Numbe/Typ Number/ Type

CUTotal Number Errors Enhance Doc. Total Number Errors Enhance Doc.

PPS1725 -505 39 466 -

PTAC 2 15 6 8 1 813 402 403 8

PRCL 6 26 17 6 3 393 202 186 5

Totals 48 25 i9 4 1710 643 1054 13

TABLE 4.5 MANHOURS BY CHANGE

CPCI Total Change Type

Error Enhancement j DocumentatIon

PPOS 1

Average Number of.

@ Manhours/Change 72 20 93

* Changes/10O Manhours 15 j1-

PTAC 2

Average Number of: I-

e Manhours/Change 54 67 s0 -8

Changes/10O Manhours 2 22 i

vrae Nuber of:4

9 Manhours/Change 15 12 31 2

* Changes/100 Manhours 7 8 3 60

Totals

Avera(le Number of:

* flahours/chaeuqe 1 47 33 5A 5 3

* Clianqes! 100 Manhours 3 15 23

one error correction performed in CPCI 2 reported a manhours expended which was

six times larger than the next largest reported manhours expended and accounted

for 80% of all manhours expended in error correction for this CPCI. Eliminating

this maintenance action, for CPCI 2, the adjusted total average number of

manhours per change equals 35 and the average number of manhours per change in

error correction equals 16.

Analysis of these new figures with respect to the complexity of a change

leads to an interesting observation. There seems to be a direct correlation

between the figures presented in Table 4.5 and the complexity of the change

performed. For the most part, changes made to PRCL (CPCI 6) were simpler than

changes made to PTAC (CPCI 2) or PPOS (CPCI 1). A ranking of the CPCI's in order

of increasing change complexity results in the order PRCL, PTAC, and PPOS. This

also happens to be the ranking for increasing manhours per change for both error

correction and enhancement.

Productivity Measures

The following productivity measures were calculated and are presented in

this subsection:

o Effected lines of code distribution by CPCI

o Lines of code effected by manhours expended

o Effort required for each 1000 lines of code

o Lines of code generated/month

The distribution of effected lines of code (LOC) by language and CPCI is

presented in Table 4.6. Below is a discussion on the calculation of the column
titled "Adjusted LOC".

Lines of Code Conversion

For this analysis, the basis of a measure of LOC is Assembly source LOC.
Hence, Higher Order Language (HOL) source LOC is converted to an equivalent
number of assembly LOC.

4-18

TABLE 4.6 EFFECTED LINES OF CODE DISTRIBUTION

HOL ASSEMBLY JCL DATA COMMENTS
CPCI LANG LOC ADJUSTED LOC LANG LOC

PPOS 1 PASCAL COMPASS

Error Correction - - - - - -

Enhancement 12 90 23 14 0 0

PTAC 2 JOVIAL COMPASS

Error Correction 37 130 3 6

Enhancement - - -

PRCL 6 IFTRAN ASSEMBLY

Error Correction 51 230 136 0 0 50

Enhancement 52 234 19 0 0 24

For the conversion of HOL LOC to Lower Order Language (LOL) LOC the
following assumption is made. A one-to-one relationship exists between
machine executable instructions and LOL instruction. That is, one LOL
instruction will perform a single operation (map to one operation code). It
is realized that an LOL instruction can generate more than one machine word
location, as often occurs in multiple operand instructions or microprocessor
instructions, but there is still only one operation performed. An LOL
instruction may also generate an operation code which Involves a macro.
However, assuming this macro is also available to the HOL compiler, this is
still considered to be only one operation and hence one LOL instruction.
Based on this definition, the LOL language can be used as a basis for LOC
generation. That is, we can convert HOL LOC into LOL LOC via a
multiplication factor. This will eliminate the bias that results when using
this metric for determining productivity, where no distinction is made
between HOL and LOL source LOC (JUNE78). It shoulf'be realized that this
conversion factor varies within compilers of the same language and from HOL
to HOL and should optimally be determined at the users site. This was not
possible within the scope of this effort, and therefore a literature search
was initiated to establish a conversion factor that best fits the PAVE PAWS
environment. These conversion factors or expansion ratios are presented in
the following table.

TABLE 4.7 EXPANSION RATIOS (JUNK79)

Language Expansion Ratio Average Ratio

FORTRAN(IFTRAN) 4-5:1 4.5:1
JOVIAL 3-4:1 3.5:1
PASCAL* 7-8:1 7.5:1
COMPASS(ASSEMBLY) 1:1 1:1

* An expansion ratio was not available for this language and was assumed
to be the same as PL/1

An average of the limits was used in this analysis instead of the upper
or lower limit. These figures are substantiated in (RCAP75).

A productivity measure was calculated using the adjusted LOC for three CPCIs

and is illustrated in Table 4.8. The total number of LOC effected was calculated

from the data in Table 4.6 by adding the adjusted LOC, Assembly LOC, and JCL.

Comments were not included. The total number of manhours expenaed differs from

the data contained in Table 4.4. This difference occurs because this

productivity measure (i.e. average number of manhours expended per LOC effected)

could only be calculated when both the number of LOC effected and number of

manhours expended were available.

4-20

TABLE 4.8 PRODUCTIVITY MEASUREMENTS
1

2 AVERAGE NUMIBER
TOTAL NUMBER LOC TOTAL NUMBER OF MANHOURS EXPENDED/

CPCI EFFECTED MANHOURS EXPENDED LOC EFFECTED

PPOS 1

Error Correction

Enhancement 127 298 2.4

PTAC 2

Error Correction 133 402 3.0

Enhancement --

PRCL 6

Error Correction 366 161 0.4

Enhancement 253 43 0.2

NOTES: 1 This table contains data on only those changes for which both number of LOC effected
and manhours expended were available.

2 Total LOC includes adjusted LOC, Assembly LOC and JCL

From this table it is also possible to compute the effort required in
manhours for each thousand lines of code. Figures for enhancement and error

correction are presented in the following table:

TABLE 4.9 MANHOURS PER 1000 LOC

CPCI SIZE ENH CODE/MANHOURS CORRECTED CODE/MANHOURS

1 31K 2350 --
2 lOOK -- 3030
6 125K 170 440

Another means of descr:bing productivity is a function of the LOC generated per

manmonth of effort (Table 4.10). For comparison and completeness, the above
figures converted using a figure of 173.3 manhours per manmonth.

TABLE 4.10 LOC GENERATED/MONTH

CPCI LOC/MAN-MONTH FOR ENHANCEMENT LOC/MAN-MONTH FOR CORRECTION

1 74 --
2 -- 57
6 1020 394

The data in these two tables (i.e. Tables 4.9 dnd 4.10) illustrate that

productivity, for enhancements, for the PAVE PAWS Operating System (CPCI 1) is

considerably lower than for the radar control software (CPCI 6). This

observation is consistent with the findings of Jones (JUNE78) and Zelkowity
(ZELK78) where they concluded that productivity was higher for application

software than for operating system software, because of the increased complexity

of the operating system.

The wide discrepancy between the error correction productivity figures for

CPCI 2 and CPCI 6 is attributable to the effects of the one extreme data point
discussed previously. One error problem in CPCI 2 resulted in a manhour

expenditure rate which was five times that of the next worst case encountered in

error correction. Deleting this data point from the calculation results in an

error correction productivity figure of 266 LOC/manmonth, a figure much more

consistent with the 394 LOC/manmonth computed for CPCI 6.

4-22

In analyzing the data an interesting observation was made. When a
considerable number (>20) of lines of code were changed (added, deleted, or
modified either for an error correction or enhancement), the manhours required

did not increase proportionately. That is, the number of manhours per LOC
decreased with an increase in the LOC changed. This may imply that there is an

initial cost in the chan~ge process which must b'e paid regardless of the type or

extent of the maintenance action. This may be an acclimation cost, directly
analogous to a learning curve on a new computer system where productivity is low
initially and improves substantially once one becomes proficient with the
system. Since for the most part, changes are independent of each other, this
learning cost may have to be paid for on each maintenance action performed
(regardless of enhancement or error correction).

4.3.3.2 Measurement Data

The maintenance activities of the PAVE PAWS system have been separated into

two basically different categories: the activity iecessary to find and correct

an error and the activity involved in enhancing the software. The relative ease

with which these tasks were carried out and the influence of MPPs and software
tools on these tasks is examined in this subsection.

The dictionary dc-fines ease as the state of being less difficult or requiring
little effort. Subjectively we can relate ease to effort however, in analyzing

the empirical data it will be assumed that there is a direct correlation()
between amount of time and ease, hs follows,

+ time - + ease

+ time - + ease

The ramifications are that simple but tedious changes are grouped into the first
class and are hence interpreted as difficult changes. The reason for

establishing this relationships is that effort will be expressed in the amount of
time to complete a given action and can hence be related to ease.

4-23 '

This section concerns itself with the following four basic measurements:

o effort versus change type
o enhancement
o error correction

o error distribution with respect to error type
o error distribution with respect to means of detection

Using Table 4.4, it is possible to compute the percent of effort expended for
error corrections and enhancements.

TABLE 4.11 EFFORT VERSUS ERROR CORRECT ION/ENHANCEMENT

TOTAL ## % OF EFFORT FOR % OF EFFORT FOR
CPCI CHANGES ERRORS ENHANCE ERROR CORRECTION ENHANCEMENT

PPOS 1 7 2 5 8% 92%
PPAC 2 14 6 8 50% 50%
PRCL 6 23 17 6 52% 48%

TOTAL 44 25 19 38% 62%

This table shows that the percent of effort spent for making enhancements to

the PAVE PAWS software is approximately 61% higher then the percent of effort

spent for correcting errors. By eliminating the previously mentioned extreme

data point for error correction in CPCI 2, the difference is even greater. The

percentages of effort for error correction and enhancement become 23% and 77%,
respectively, by deleting this data point. This leads one to the conclusion
that, on the average, an enhancement is more difficult to implement than an error
correction.

Note that code optimization and capability addition are combined under
enhancement (i.e. changes are subdivided into error correction and enhancement

with additional capabilities grouped under the latter). Also documentation
changes are not included under errors or enhancement, since it is plausible to

assume that these do not severly impact software performance (i.e. a DR may have
been generated solely to correct a documentation error, which must be

distinguished from a software error by our definition).

4-24j

With the present accounting methods used the effort required in finding
errors cannot be readily determined. The total effort expended on a particular
change is reported on the PCF and it is uncertain as to Whether or not the effort
expended includes error detection (finding an error).

Table 4.12 depicts the number of occurrences for each error type, for the
most commnonly encountered ones. Only the primary error types are presented. For
example, suppose in a numerical computation an overflow was encountered and upon
investigation it is discovered that the equation used in the comp~utation was
incorrect. Since, the primary error is in the specification of the equation the
error will be classified as a specification error. The overflow being only a
consequence or manifestation of the primary error.

Note that this table includes all of the errors examined from the 56 packets
received, whereas Table 4.11 includes only information on those errors for which
the effort expended was known (a PC form was available).

TABLE 4.12 ERROR TYPE DISTRIBUTION

NUMBER OF PERCENT OF
OCCURRENCES TOTAL BY TYPE

CPCI CPCI

ERROR TYPE 1 2 6 1 2 6

SPECIFICATION 2 7 - 100% 78% --
SUPPORT SOFTWARE - - - -- - - - -

FUNCTION INCORRECTLY - 2 1 -- 22% 4.5%
IMPLEMENTED

INTERFACE INCORRECTLY - - - -- -- --

IMPLEMENTED
DATA I/O - - - -- -

SOFTWARE INTERFACE - - 4 - 18.2%
HARDWARE INTERFACE - - 2 - 9%
COMPUTATIONAL - - 1 - - 4.5%
LOGIC - - 11 - 50%
DOCUMENTATION - - 3 - 13.6%

It is interesting to note that there are no specification errors in CPCI 6,
the Radar Control Software, but that 50% of the errors examined were logic errors
and 18% were software interface errors.

4-25

The following Table depicts a distribution based on the means of error
detection and includes only those errors which resulted in a program
modification.

TABLE 4.13 MEANS OF DETECTION DISTRIBUTION

MEANS OF DETECTION 1 2 6

INCORRECT OUTPUT OR RESULT 1 8 9
MISSING OUTPUT - 1 1
PERSONAL COMMUNICATION 1 - 1
ERROR MESSAGE - - 3
INFINITE LOOP - - 3
MAINTENANCE CROSSCHECK - - 1
OTHER - - I

TOTAL 2 9 19

In this table it is interesting to note that 68% of the errors specified in
CPCI 6 were related to some form of output anomaly (incorrect, missing, or error

message).

Based on the data available it cannot be readily determined which errors are

attributable to specific MPP or software tools usage. However, an examination of
error types and means of initial detection may provide insight into whether or
not the use of MPP or software tools should have detected the presence of errors
(e.g. Did any errors slip thru the code and documentation reviews, testing,
etc.). Table 4.14 compares the error type to the means of initial detection.

Analysis of this data leads one to the following observations. Almost all of
the error types designated as specification errors were detected by an incorrect
output or result. This implies that the software testing, which tests for the
adherence of the software to the design specification among other things, was not
complete with respect to specification testing for all specifications and
requirements. Of the errors found, a very small percentage were detected via
documentation review or maintenance cross check. This would seem to be
intuitively obvious since it is unlikely that the maintenance staff would
purposely look for errors. It must be emphasized that these are simply
observations. The scarcity of the data precludes the establishment of conclusive
results.

-~ 4-26

I-
C)

00
L4A,

00

cc4o0

sq-

I-
5- ________ucc

L-j
1__ 7_ _ _ox __=

cc0 i A

40- C

L"C0 zw- D

faI I- P

06= OMM-

W
LW l)CJ mj(

-J 4-27

4.3.4 Data Collection Refinements

The following recommendations are made to refine the data collection process
to provide more usable and consistent data:

1) To collect a complete set of maintenance data, it is essential to
initiate the data collection process immediately after the acceptance of
the software product.

2) Recording of error correction information should be refined to provide
more exact measurements of manpower and computer resource expenditures.
There should be a breakdown of activity recorded (i.e. error detection,
correction etc.) and standardizc.. definition of terminology.

3) The PCD/PMR packages should be updated to include the specification of
lines of code modified. When reviewing a PCD/PMR packet it was often
difficult to determine the lines of code that were added, deleted or
modified. This can be overcome in one of two ways:

o Include before and after source listings within these data packets,
or

0 Include new fields on the forms to report lines of code modified,
Programming language, and module name.

4) Provide distinct accounting of error correction and enhancement for
program modification. When a PCD/PMR reports a combined error
correction and enhancement, a separate accounting should be kept of the
resources expended, lines of code modified etc. This will enable a
separation and proper weighting of these activities in future analysis.

5) Include better tracking of software modifications from time of
modification to testing and, integration within new version release.
Once a problem is "corrected" (by a PCD/PMR) it is not known whether or
not it will cause a problem in a system upgrade. Also, the amount of
time spent in integrating and testing the corrected code is not included
in the Program Control form. Nor is it known if a problem is
"recorrected" because of a failure in integration and testing. This
information is important due to the fact that once a problem is corrected
the process is not complete until integration and testing occurs. A
correction may cause a problem in another module which does not surface
until integration and testing is performed.

4.3.5 Future Analysis

o Productivity

It is a desirable for future productivity analysis to establish a
conversion factor for on site compilers for the purpose of determining the

4-28

number of assembly code lines per HOL line of code. Some compilers will give
you the option of an assembly listing from a compiled HOL program. By taking
some random programs and determining their size in the HOL lines of code and
the resultant assembly lines of code a conversion factor for that compiler
can be obtained. Once a conversion factor for each HOL compiler used on PAVE
PAWS is determined, the accuracy of the factors can be determined. With
these factors in hand their use will eliminate the partiality that exists
between HOL and lower order langages (LOL) when counting lines of code.

o Determination of Software Quality Factors

Once an adequate amount of information has been collected the
reliability and maintainability of specific software modules can be
ascertained. By analyzing software modules with high and low degrees of
reliability and maintainability it may be possible to determine the factors
that impact software quality.

o Comparison to Other Projects

As more data is acquired at the DACS on the maintenance of computer
software, it is recommended that studies be performed comparing the results
and observations contained in the PAVE PAWS Database with other databases.

4.4 Conclusions and Recommendations

Although the data that was available during this study was scarce and too
limited to form conclusive quantitative determinations, the experiences,
opinions and comments of the PAVE PAWS maintenance staff provide a sufficient
basis to develop some strong conclusions on the use of Modern Programming
Practices and Software Engineering Tools.

From the viewpoint of the PAVE PAWS maintenance staff, Modern Programiming
Practices, Tools and Techniques are a valuable asset, not only from the product

quality viewpoint but also with respect to the maintenance structure and process.
The use of these practices, tools and techniques during development has produced

software which is more consistent and error free than seen in previous systems.
Most important to the PAVE PAWS staff is that the code produced is 'simpler (less
complex), more straight forward and structured. In the maintenance environment,
these same Modern Programming Practices, Tools and Techniques are an even more

valuable asset.

In the PAVE PAWS environment where the prime dictums are "timely response to
the operations world" and "accuracy and reliability for any modification to the

4-29

system", these practices and procedures are required for the production of
reliable software modifications. While the maintenance of the PAVE PAWS software
is early in the life cycle of the system, the maintenance staff has already
placed heavy reliance on Modern Programmning Practices, Tools and Techniques. To

date, the staff feels that this reliance has been justified.

The greatest handicap to the PAVE PAWS maintenance staff is caused by the
maintenance documentation. The delivered documentation (the "A"l Specs, ORB$'

specs, "C" specs, HIPOS, POL and written commuentaries) describe the PAVE PAWS
system from the development standpoint as the system was being created. To the
developer, this approach provides good documentation and traceability of the
system during the development process. For the maintenance process, the
documentation must reflect the current status of the system from the top-down as
well as from the bottom up. The maintenance staff has pointed out that they have
to be able to find the location of an error and be able to determine the
conditions that caused the error (top-down). Once found, they need to know what
affect a proposed modification will have on the system (bottom-up).

The PAVE PAWS personnel were asked to clarify their remarks and where
possible to indicate what additional documentation or tools are required to
support the maintenance process. The PAVE PAWS staff feels that for
documentation to be useful, it must reflect the current status of the system. It
must be organi-ed in a manner that allows a prospective viewer to scan it top-
down. In a system the size of PAVE PAWS, functional charts and associated
software organization charts are required to present a graphical view of the
system. While graphical presentations are helpful, software modifications
require detailed knowledge of the system software organization. Graphical
representations of the modules (CPCs) which make up an overlay, overlays that
form a major system function (CPCG) and the CPCGs that form a CPCI are also
necessary to show the software organization.

Because of the limited amount of empirical data available for this study, no
conclusive results can be made from analyzing this data to determine the effects
of the use of MPPs and SE tools on the maintenance phase of the software life
cycle. However, procedures were established for the continual collection and
processing of the data to form the basis of a Software Experience Maintenance

4-30

Database at the DACS. The existence of this data base and continued receipt of
data from the PAVE PAWS maintenance life cycle will greatly facilitate studies on
maintenance costs, comparisons with other systems to determine relative effects
of comparable or alternative tools and techniques, and productivity based on
factors such as programmer experience, program size, software complexity, etc.

4-31

REFERENCES

BAKE77 Baker, W.F. "Software Data Collection and Analysis: A Realtime
System Project History." Technical Report RADC-TR-77-192. Griffiss
Air Force Base, New York, Rome Air Development Center, 1977. AD#041 644.

DONA8O Donahoo, J.D.; Swearinger, D. Computer Sciences Corporation, "A
Review of Software Maintenance Technology." RADC-TR-80-13. RADC,
Griffiss Air Force Base, New York 1980. AD#A082 985.

JUNK79 Junk, W.S., McCall, J.A., "Reference Manual: Price Software Model",
RCA Price Systems, December 1975.

JONE78 Jones, T.C. "Measuring Programing Quality and Productivity." IBM
Systems Journal 1978, 17, (1), 39-63.

MCCA77 McCall, J.A.; Richards, P.K.; Walters, G.F. General Electric
Company, "Factors in Software Quality: Concept and Definitions of
Software Quality." RADC-TR-77-369. Volume 1. RADC, Griffiss Air
Force Base, Rome New York 1977. AD#A049 014.

RCAP75 Reference Manual: Price Software Model, RCA Price

STAN77 Stanfield, J.R.; Skrukrud, A.M. System Development Corporation,
"Software Acquisition Management Guidebook: Software Maintenance."
ESD-TR-77-327. Contract Number F19628-76-C-0236. Electronic
Systems Division, Hanscom Air Force Base, Massachusetts.

THAY76 Thayer, R.A., et al. "Software Reliability Study." RADC-TR-76-238.
Griffiss Air Force Base, New York, Rome Air Development Center,
1976. AD#A030 D8

WILL76 Willmorth, N.E.;Finfer, M.C.; Templeton, M.P. System Development
Corporation. "Software Data Collection Study Summary and
Conclusions." RADC-TR-76-329. December 1976. Vol I, AD#A036 115.

ZELK78 Zelkowitz, Marvin V., "Perspectives of Software Engineering,
Computing Surveys, Vol 10, No. 2, June 1978.

R-1

APPENDIX A

INSTRUCTIONS FOR COMPLETING

DATA COLLECTION FORMS

A-i

INSTRUCTIONS FOR COMPLETING

THE PROGRAMMER EXPERIENCE PROFILE

The purpose of this form is to classify the background of the
personnel on each project. It should be filled out once at the
start of the project by all personnel.

PERSONNEL ID. Leave blank

NAME Your full name
AGE Optional
DATE Date profile is being completed
PROJECT Optional

JOB TITLE Optional
POSITION GS12, 0-1, E-5

GROUP Name of company or government branch

A. EDUCATION

Degrees. Fill out educational background.
Courses. Fill in number of university and in-house

computer science courses.
B. WORK EXPERIENCE

Give years involved with computers and percent time in each
listed activity. Name the languages, machines and operat-
ing systems you utilize on this project and the number of
years (nearest year) experience with each.

C. SPECIFIC EXPERIENCE
Give years (to nearest year) involved with the following
techniques, languages and operating systems.

1. TECHNIQUES - Give number of years (to the nearest year).

Structured Programming - Writing programs using only a
limited set of Control structures (e.g., if-then-else,
do while).

POL - A Program Design Language. An algorithmic speci-
fication of program as a function of its input and out-
put data.
HIPO - Hierarchical Input Process Output. A graphical
technique describing a program as a function of its
input and output data.

A-2

Top Down Development - A technique where high level
modules are developed before the modules that are
called by these high level routines.

PSI - The Program Support Library which provides
hierarchical levels to ensure qualification of the
software.
Pre-Compilers - Software which extends the capabilities
of NOLS by allowing structured coding.

Chief Programmner - A technique where an individual
programmier writes top level code and major interfaces
and delegates responsibility to others to complete it.
A librarian manages all source code and documentation.

2. PROGRAMMIING LANGUAGES - Give number of years (to the
nearest year) you have used these programmiing
languages.

3. MACHINES AND OPERATING SYSTEMS - Give names of machines
and operating systems and the number of years exper-
ience with each one k, o the nearest year) List only
the three with which)-u have the most experience.

4. PROGRAMMING APPLICATIONS - Give the number of years
experience you have in programming for each of the
listed applications.

A-3__ _ _j

PROGRAMER EXPERIENCE PROILE

PERSONNEL ID

NAME AGE OAT

PROJECT JOE TITLE

POSITION GROUP (I'VZSZoI)

A. EDUCATION (IN YEARS)
NIGH SCHOOL YEAR GRADUATEO

COLLEGE

DEGREE OEGR 'EAR MAJOR LO:ATION

4 CaRPUTEa SCIE14CE COURSES _ COMPUTER SCIENCE CREDIT HOURS TAXEN_

I COMPUTER SCIENCE SEMINARS
6. WdORK EXPERIENCE

i YEARS WITH COMPUTERS
YEARS IN INOIVOUAL EFFORT

- fEARS ZN TEAM EFFORT

Z YEARS IN SUPERVISORY CAPACITY YRS. R.

TARGET LARGUAGE(S) NAMEI
TARGET MACHIME(S) NAME

TARGET OPERATING SYSTEMS (OM¢E)

C. SPECIFIC EXPEPIENCE (RESPONSE IN YEARS UNLESS OTHERWISE INDICATED)

1. TECHNIQUES 2. PROGRAMMING LAN,;GUAGES
STRUCTURED PROGRAMVING JOVIAL

PO. ASSEMILER
HIPO FORTRAN

TOP-OOWN DEVELOPMENT COBOL

PSIL ALGOL

PRE-COMPILERS - PL/I

CHIEF PROGAANER TEAR PASCAL

ONER OTHER

3. OPERATING SYSTEMS
,'I NES OPERATING SYSTEM YRS.

4. PROQA_!HG APPLICATIONS (YEARS)

BUSIIESS
SCIENTIFIC/VATHEMATICAL
SYSTEMS PROGPJUI4MIRG

REAL-TIME SYSTEMS

DATABASE APPLICATIONS

CTHER

A-4

PERSONAL EXPERIENCE PROFILE CODING FORM

PERSONNEL I0I I I i I! 1-7
NAME I I I -F I I I" I I I I7 I I - iI -10 -27
AGE 28-29

DATE 30-3S

PROJECT365

JOB TITLE I _151-70
POSITION I 71-75

GROUP (DIVISION) I 76-78

EDUCATION COLLEGE 79

HIGH SCHOOL

YEAR GRADUATED LL 1-2

DEGREE DEGREE YEAR MAJOR

21-29 T-

30-31 # COMPUTER SCIENCE COURSES

32-33 COMPUTER SCIE11CE CREDIT HOURS TAKEN

34-35 # COMPUTER SCIENCE SEMINARS

YCRK EXPCR[ENCE 36-37 # I YEARS WITH COMPUTERS

38-39 % YEARS WITH INDIVIDUAL EFFORT

40-41 % YEARS IN TEAM EFFORT

42-43 % YEARS IN SUPERVISORY CAPACITY

TECHNIQUES LANGUAGES

STRUCTURED PROGRAMMING 44-45 JOVIAL 60-61

PDL 46-47 ASSEMBLER 62-63

HIPO 48-49 FORTRAN 64-65

TOP-DOWN DEVELOPIENT 50-51 COBOL 66-67

PSL 52-53 ALGOL 68-69

PRE-COMPILERS I 54-55 PL/I 70-71

CHIEF PROGRAMMER TEAM 56-57 PASCAL 72-73

OTHER 58-59 OTHER 74-75

I

A-54 _ __ _____

PERSONAL EXPERIENCE PROFILE CODING FORM

PROGRAI41NG

APPLICATIONS

BUSINESS m 1-2

SCIENTIFIC/MATHEMATICAL 3-4

SYSTEMS PROGRAMMING 5-6

REAL-TIME SYSTEMS 7-8

DATABASE APPLICATIONS 9-10

OTHERS 11-12

OPERATING

MACHINES SYSTEM YEARS

13-28

29-44

45-60

A-

A-6

INSTRUCTIONS FOR COMPLETING

THE CPCG DESCRIPTION FORM

The purpose of this form is to obtain general information con-

cerning the CPCGs in the PAVE PAWS environment. It should be com-

pleted for each CPCG initially in the system and everytime there-

after when it is modified.

PSL DATE:

Date of the PSL management report from which this
CPCG data is extracted.

LIBRARY LEVEL:
Library level from which the CPCG size data is ex-
tracted. Normally set equal to "ALL".

DATA SOURCE:
PSL Management Report from which the size data is ex-
tracted. Set to:

"PRG" if from Summary by Programs
or "SEG" if from Summary by Segments
Normally, this parameter is set to "PRG".

SOFTWARE IDENTIFICATION:
Give the CPCI name and CPCG name of the program
as listed in the PSL.

SPECIAL ENVIRONMENTAL FACTORS OF THIS COMPONENT:
Answer "Y" or "N" to those environmental factors
which apply to this program.

GENERAL PROGRAM INFORMATION:
Number of CPCs: The total number of programs con-

tained in this CPCG.

Number of Segments: The total number of INCLUDEd
Segments contained in this CPCG.

NOTE: Do not count CPCs or Segments at a
higher library level if they are current-
ly at a lower level.

Number of Source Lines: The total number of source
statements. including com-
ments.

Number of Machine Words: The total number of words
of object code into which
the source code compiles.

A-7 -j

CPCG DESCRIPTION FORM

PSL Date: ___________

Library Level: _________

Data Source: ______ _____

Software Identification:

CPCI__________ CPCG______

Special Environmental Factors of the
Component:

a) Special Display _ ____ h) Concurrent Development
of ADP Hardware _____

b) Detailed Operational Re-
quirements Definition _ ____ i) Time Sharing (vs Batch) ____

c) Change to Operational j) Development Using Separate
Requirements _ ____Facility_____

d) Real-Time Operation Q____ c Development on Opera-
tional site_____

e) CPU Memory Constraint _____

1) Development on other
f) CPU Time Constraint ______that Target System _____

g) First S/W Developed m) Development at more
on CPU _____ than one site _____

Geneal rogam nfomaton:n) Programmier Access to
Geea rga nomto:Computer_____

Number of CPCs_____

Number of Segments_____

Number of Source Lines _____

Number of Machine Words _____

A-8

CPCG DESCRIPTION CODING FORM

SOFTWARE IDENTIFICATION CPC I 1-4

CPCG J 1 L 5-13
SPECIAL ENVIRONENTAL FACTORS

SPECIAL DISPLAY 14

DETAILED OPERATIONAL REQUIREMENTS DEFINITION 15

CHANGE TO OPERATIONAL REQUIREMENTS 16

REAL TIME OPERATION 17

CPU MEMORY CONSTRAINT 18
CPU TINE CONSTRAINT 19

FIRST S/W DEVELOPED ON CPU 20

CONCURRENT DEVELOPMENT OF ADP HARDWARE 21

0 TIME SHARING (vs BATCH) 22
DEVELOPER USING SEPARATE FACILITY 23

DEVELOPMENT ON OPERATIONAL SITE 24

DEVELOPMENT ON OTHER THAN TARGET SYSTEM 25
PROGRAM4ER ACCESS TO COMPOITER 26

PROGRAM SUPPORT LIBRARY DATA

PSL DATE LEVEL DATA SOURCE NUMBER OF NUMBER OF SOURCE SIZE OBJECT SIZE
PROGRAMS SEGMENTS

FJ7 EEW 7 I I I I I I I I IW 1 1 1 1 I]
27-32 33-35 36-38 39-41 42-45 46-51 52-57

I'

CPCG STATUS CODING FO'R

CPCG 1-4 PSL DATE 5-10

I W7-7 I I III
CODE PROGRESSION

PRG VN CPT VN INT VN FIX VN TST VN FRZ VN DEL VN

11-17 18-24 25-31 32-38 39-45 46-52 53-59

CODE DURABILITY

PRG 60-66 CPT 67-73 INT 74-80 FIX 81-87 TST 88-94 FTZ 95-101 DEL 102-108

109-114 115-120 121-126 127-132 133-138 139-144 145-150

A-10

INSTRUCTIONS FOR COMPLETING THE

CPCG MAINTENANCE ACTIVITY FORM

This form is used to keep track of the time expenditures by

PAVE PAWS personnel from the time a specific maintenance activity

is initiated, to its completion. A specific maintenance activity

is defined as: 1) the correction of a detected error, 2) the

addition of a new function or capability to the PAVE PAWS system,

3) the deletion of an existing function or capability of the

PAVE PAWS system, or 4) the optimization or enhancement of an

existing PAVE PAWS capability or function.

This form is to be completed each time maintenance is per-

formed on a CPCG. This form is initiated when the Change Review

Board (CRB) minutes indicate that a Discrepency Report has been

submitted and a Memorandum of Recommended Action has been approved

by the CRB. It is completed when a new Software Version Release

containing the associated documentation has been received.

DR NUMBER: Discrepency Report sequence number.

DATE: Date Discrepency Report was submitted.

LOCATION OF ACTIVITY: Give the CPCI name and CPCG name of
the program being modified. A MAF must be completed for each
distinct CPCG being modified, even if all are under the same
Discrepency Report.

MAINTENANCE TYPE: Number the reasons for maintenance (1=
primary, 2=secondary) if there is more than one reason for
the change. Give a brief description of the change.

SPECIFICATION PRECISION: Check the precision of the design
specifications produced for the change.

SIZE: Give the lines of source code and object code size of
the code necessary to implement the change if known.

URGENCY: A user assessment of the urgency at some particular
phase of the maintenance activity is requested.

A-1

The assessment is a rating of E, U, or R where urgency is
defined as:

E. Most Urgent - system critical, respond as rapidly
as possible;

U. Urgent - higher priority than the average mainte-
nance cycle;

R. Least Urgent - perform in the average maintenance
cycle.

DIFFICULTY OR COMPLEXITY: Requires an assessment by the
evaluator of the degree of difficulty in performing some op-
eration in the maintenance activity. The appropriate level
of complexity should be checked.

1. Very Difficult or Complex - impacts more than one
CPCI;

2. Difficult or Complex - impacts more than one CPCG;
3. Medium Difficulty or Complexity - impacts more than

one CPC in a CPCG;
4. Simple-minor modifications to several CPCs;
5. Very Simple-minor modification to a single CPC.

SECTION A: Complete this section if a change is being made
for a reason other than new requirements.

MEANS OF INITIAL DETECTION: Check the appropriate means by
which the error was initially detected. Enter 1 for the
primary reason. If there was a secondary reason, indicate
by entering 2. Up to t,'wo may be marked.

EFFORT IN DIAGNOSING THE ERROR: Number of Runs to Diagnose:
Give the number of computer runs used in correcting the error.
ELAPSED COMPUTER TIME: Give the number of hours of computer
time used in correcting the error.
WORKING TIME TO DIAGNOSE: Give the total time involved in
determining change to be made.
PROBABLE ERROR SOURCE: Enter 1, 2 or 3 for those items which
most likely explain the source of the error. Enter 1 for the
primary source. If there was a secondary source, indicate by
entering 2. If there was a third reason, indicate by enter-
ing 3. Up to three sources may be marked.
SECTION B: Complete when the maintenance activity involved
making a change to the software.

A- 12 4

SOFTWARE CHANGE REQUIRED:

New Requirements: If the change is a result of new re-
quirements, check those appropriate new requirement
categories. Up to three may be marked. Indicate pri-
mary, secondary, and tertiary be entering 1, 2 or 3,
respectively.

Nature of Change: Check the appropriate nature of the
change involved. Up to three may be marked. Indicate
order by entering 1, 2 or 3.

SECTION C: To be completed on the form.

For each stage of the maintenance activity give the following
information:

Date: Give the date each stage was started and
completed.

Personnel Hours: Give the amount of time in each person-
nel catagory that was devoted to the maintenance activity
in tenths of hours. For some stages of the maintenance
activity some personnel catagories may not have devoted
time to the maintenance activity in which case time
should be recorded as zero.

CPU Time: Give the amount of computer time needed to
complete each stage of maintenance.

Personnel ID: Identify the individuals performing the
activity in each stage.

SECTION D: Flip the MAF over and list the names of the
segments changed and the number of source lines of code added,
deleted or modified in each segment.

A-I 3

OR , __________weogs MINMANCeE ACTIVITY FORM DT_____________

Locatiin of Activity CPCI _____________CPCU __________ ______________

Nalismeact Type: Error Cortiig ________ Add Capability ____ Version release_______

Delete Caaboit ________ Otiize/none _____

Irlef Description of Chafpe to be mode ______________________

Spafcof~tion precision: very procise - prodct imrecise
Sine of Chafe: Samc Caft Lines -_______ ObJect Cede Inistructions________
Urgency Of biitmce Activity (1-3)
Complexity of Mahitmnct Activity: gary Caplex CMplia limedium Simpl.

Ver Simonle

SMECO Cmaleta If Noatao Activity was for trrar Cesroitiaf

MEANS Of INIITIAL. DETECTION / oly for. corection (nalt NowDept.
am"e thanf ae category my be 1 aed

-- a. Need Processing d. Interruipt EMe (Cade _)___ I . 11yer eaMSa
b. personal Cnmicatia a___i. Incorrect Output or Resalt h. Cede reew __

C. 'Infinite LOP f__ . Missing Output 1. Decmna~ti@G review __

k. Phieam~c cremechack (as a reslt of & Chang Is Ctes seftmOnr) J. Special gDo$ tede"
1. Othm,. Describe_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _

EFFOR IN DIAINHE OM -3 Do net Include effort seat i" initial detection

a. Ne. Of Runs, to Diaegn - lae Cmet Tim (Mois) ____ received ___

b. Woreing Tim t aine,: Days __ hours __ Analysis kaplS -

C. No. Of Lim of Cede: Aded _ Delted _ Corrected ProVJec Deal___

- a. Misieterpretation __ . Specified hiterface Not - .. Deck Dtap Effor - 0e. Operator [rie
of Spec. Amplemmi! Correctly k. Camutatiesmi Error _ p. Our to Pr

- b. latrvact Spec. I__ . Software Interface ___1. Data 1/O r Modfictio
- C. ameplo. Spc. p. Nser *A oIterfae a. Loi a,,,. Cavae Not tPaed.

-d. Specified Faectionm Net h_ . operating Sytm ___ev~ n.roaadllite
IpimnedCrrtty ___1. bSpot Software Error ***r Othier. Explain

MSI .J Complete if Mmiytonce Activity was to woke 4 change.

M DBL REM~ - /1 tiee. touch apply

-Docmnetation d.__ Structural a._ Meloni - Hardwa h re
(Prefce or Cmits; a.__ Algerthwic Eiinevp odl e* teEsln

b. ___ntr~ moie Iot-cto Other. EtxplaEina
b. vi nsrcto fOte. xlan C. Software Implementation __________

5c. ___ W4ii Ceestants

Emp CONECTON rnyK 9? MMoac AMMtTI41? It:__ 1:0_
ajouL hiintuiaece Effort aOii ed for Chafge or Cavacimi

S~TG ATE *P(DSORD UM CPU Tile PESONE ID

Docile ffort received Forwayded maenagement Analyst Pregrinmer Clerical

refing Effort 1
ri"t Testing

I jetepation Tasting
ryostiepDvig

r ecord hus to nearest tatD of ean hour

A-1 4

MAINTENANCE ACTIVITY CODING FORM

I-5 DR I DATE 6-I I I 11-11
CPCI 12-15

CPCG I 4 16-19

CPC/SEGMENT 20-24 (LEAVE BLANK IF MORE THU
ONE CPC)

25 MAINTENANCE TYPE P 26272B VERSION RELEAEIZII9-30
27 L i28

SPECIFICATION PRECISION [31-32

URGENCY OF MAINTENANCE 33 INTEGERS - RIGHT JUSTIFIED

COMPLEXITY OF MAINTENANCE M 34-35 ALPHABETIC - LEFT JUSTIFIED

MEANS OF INITIAL DETECTION 36-37
38-39

PROGRAMMER ASSIGNED I 40-46

EFFORT TO CHANGE 47-50 51-54
MANHOURS COMPUTER HOURS TENTHS

NO. OF FILES AFFECTED fT 55-57
NATURE NEW RE-

ERROR SOURCE OF CHANGE QUIREMENT

58-59 = 64-65 70-71

60-61 . 66-67 [4..472-73
62-63 68-69 LL 74-75

ADDED
DELETED

DR #1-5 CHANGED 6 FILE NAME AFFECTED 7-80

A-I 5

APPENDIX B

PAVE PAWS MAINTENANCE DATABASE

B-1 j

APPENDIX B

PAVE PAWS Maintenance Database

1. INTRODUCTION

The purpose of this Appendix is to describe the contents of the PAVE PAWS

Maintenance Database. The database consists of the following sequential files:

PPPEP Programmer Experience Profile File

PPDRH Discrepancy Report History File

PPMAF Maintenance Activity File

PPCDF CPCG Description File

PPCSF CPCG Status File

PPPCH CPC Change History File

PPSCH Segment Change History File

B-2

2. Programmner Experience Profile File (PPPEP)

This file is used to describe the experience of the members
of the PAVE PAWS maintenance staff. Each experience profile is

recorded in a set of three (3) records as depicted in Figure B-1.
The input source is the PEP form. Major categories of experience

include:

* Age and Rank
e Formal Education and Major Course of Study

9 Computer Science Education

* Data Processing Experience

9 Modern Programmning Practices Experience

* Prograrmming Languages Experience

9 Computer System Experience

e Applications Experience

The following remarks apply to the data items in this file:
(1) The Personal ID Code is formed from the first initial

followed by the first six characters of the person's
last name (Note 1).

(2) Years of experience is recorded to the nearest whole
year.

(3) Experiences not applicable are recorded as blanks in
the appropriate columns of the record.

(4) Some data are not critical and may be recorded on a
voluntary basis. Data of this type includes age,
project name and job title.

This file should be updated periodically as new members are

added to the PAVE PAWS maintenance staff. In most cases, a per-

sonal telephone call to the individual should be all that is need-

ed to allow the individual responsible for maintaining the PAVE
PAWS Software Maintenance Database to complete a PEP coding form.

The data contained in this file can be utilized to compare

the effort and time required to resolve a Discrepancy Report with

8-3

the experience of the maintenance personnel with regard to formal

education, on the job training, experience with specific MPPs,

languages and computer systems and specific types of applications

experience.

LOCATION DESCRIPTION FORMAT COMMENTS

RECORD 1

1- 7 Personal ID Code A7 Note 1

8-27 Name of Individual A20

28-29 Age

30-35 Date Profile Completed 16 YYMMDD

36-50 Project Name A15

51-70 Job Title A20

71-75 Position (GS12, E-6, 0-1) A4

76-78 Section Name (ANL, ADQ, A3
ADT)

79 Years of College Education II

80 Years of High School Ii
Education

RECORD 2

1- 2 Year Graduated (High School 12
if no College)

3- 5 First College Degree (BS, A3 Blank if
AAS) not needed

6- 7 Degree Year (Last Two 12
Digits)

8-11 Major Course of Study A4

12-14 Second College Degree A3 Blank if
(MS, MEE) not needed

15-16 Degree Year (Last Two 12
Digits)

FIGURE B-1 PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP)

B-4

LOCATION DESCRIPTION FORMAT COMMENTS

RECORD 2 CONTINUED

17-20 Major Course of Study A4

21-23 Third College Degree A3 Blank if
(PHD, MAT) not needed

24-2t Degree Year (Last Two 12
Digits)

26-29 Major Course of Study A4

30-31 Number Computer Science 12
Courses

32-33 Number Computer Science 12
Semester Hours

34-35 Number Computer Science 12
Seminars

36-37 Number Years With Computers 12

38-39 Percent of Years Individual 12
Effort

40-41 Percent of Years Team 12
Effort

42-43 Percent of Years Supervisor 12

44-45 Number Years with Struc- 12 Round frac-
tured Program tion of years

to nearest
year in the
following
fields

46-47 Number Years with Program 12
Design Language

48-49 Number Years with HIPO 12

50-51 Number Years with Top- 12
down Dev.

52-53 Number Years with Program 12
Support Library

54-55 Number Years with Pre- 12
compilers

56-57 Number Years with Chief 12
Programming Team

FIGURE B-1 PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

B5-5

-'

LOCATION DESCRIPTION FOF44AT COMMENTS

RECORD 2 CONTINUED

58-59 Number Years with Other 12
Techniques

60-61 Number Years with JOVIAL 12

62-63 Number Years with ASSEMBLER 12

64-65 Number Years with FORTRAN 12

66-67 Number Years with COBOL 12
68-69 Number Years with ALGOL 12

70-71 Number Years with PL/I 12

72-73 Number Years with PASCAL 12

74-75 Number Years with Other 12
Languages

RECORD 3

1- 2 Number Years with Business 12
Applications

3- 4 Number Years with Scien- 12
tific/Math Applications

5- 6 Number Years with System 12
Programming Applications

7- 8 Number Years with Real- 12
time Applications

9-10 Number Years with Data- 12
base Applications

11-12 Number Years with Other 12
Applications

13-19 Name of Computer (Primary) A7 CDC CYBER
20-26 Name of Operating System A7 NOS

(Primary)
27-28 Number of Years This 12

System (Primary)
29-35 Nar, of Computer (Secondary) A7 IBM 370

36-42 Name of Operating System A7 OS
(Secondary)

FIGURE B-1 PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

B-6

LOCATION DESCRIPTION FORMAT COMMENTS

RECORD 3 CONTINUED

43-44 Number of Years this 12
System (Secondary)

45-51 Name of Computer (Tertiary) A7 H6180

52-58 Name of Operating System A7 MULTICS
(Tertiary)

59-60 Number of Years this 12
System (Tertiary)

FIGURE B-I PROGRAMMER EXPERIENCE PROFILE FILE (PPPEP) CONT.

B-7

3. Discrepancy Report History File (PPDRH)

This file is a copy of the PAVE PAWS DiscrepancyReport Data-

base (DRDB) developed and maintained by the SPA ADQ branch at

Beale Air Force Base. Figure B-2 describes the data contained in

this file.

The DRDB is updated by a set of support programs developed by

ADQ whenever a DR is opened, submitted for analysis, closed, or its

status otherwise changed.

LOCATION DESCRIPTION FORMAT SAMPLE DATA

RECORD 1

1- 5 Discrepancy Report Number A5 10167
Y = Last Digit of Year
NNNN = Sequence Number

7- 9 Discrepancy Report Origin A3 7th

11-14 Local DP Number A4 B270

16-55 DR Description A1O

57-63 Date DR Received A7 10Oct79

65-67 Responsible Section A3 TAC

69 DR Priority Al R

RECORD 2

1- 7 Date Analysis Started A7 06Nov79

9-15 PMR/PCD/PDDR Open Date A7 12Dec79

17-56 PMRYYNNN, PCDYYNNN, PDDRYYNNN, A40
PDDRYYNNN, PMRYYNNN/PDDRYYNNN,
PCDYYNNN/PDDRYYNNN, or any
remarks desired

FIGURE B-2 DISCREPANCY REPORT HISTORY FILE (PPDRH)

B-8

LOCATION DESCRIPTION FORMAT SAMPLE DATA

RECORD 3

1-15 Name of Programmer Assigned A15 N. NAHE
to the Project

17-23 Estimated Completion Date A7 10Feb80

25-31 Scheduled Version Release A7 PTAC-DO

37-39 Scheduled Operation Date A7 13Apr80

41-47 Date Forwarded to NCCB A7 18Dec79

49-51 CCB Action (APP, REJ, DEF) A3

53-59 Date of NCCB Action A7 31Dec79

61-67 Date Project Closed A7 13Apr8O

Note: APP Approved

REJ Rejected

DEF Deferred

FIGURE B-2 DISCREPANCY REPORT HISTORY FILE (PPDRH) CONT.

B-9

4. Maintenance Activity File (PPMAF)

This file summarizes the information provided periodically by

the PAVE PAWS System Programming Agency concerning each Software

Version Release (SVR). A set of records is defined for each soft-

ware modification described in the SVR.

The source of the data provided in this file is the CMAF form

and includes, for each software modification, the type of mainte-

nance activity being performed, the redesign specifications preci-

sion for that activity, and the complexity of the maintenance

activity. Also provided is data concerning how the error was de-

tected, the effort involved in diagnosing it, the reason and

nature for a change in the software, and the effort required to

make the change or correction in the software. This data was

summarized from the following Air Force forms:

ADCOM form 103 DR - Discrepancy Report
ADCOM form 542 PMR - Program Modification Request
ADCOM form 544 MDIS - Modification Design and Interface

Specifications
ADCOM form 547 PDDR - Pronram Documentation Discrepancy

Repo.rt
ADCOM form 549 PCD - Program Change Document

Additional maintenance data related to each problem report was

contained on:

MRA - Memo for Recommended Action
PC - Project Control Report

Accompanying each batch of discrepancy reports are:

@ Version Release Request (ADCOM form 540)

e Version Description Document

* DT & E Version Test Report

* Recommended OT & E Procedures

B-1 0

NPP IN TO4 PAVE PANS SOMTARE NA:NrmtEAO ENVIRoww. (U)
4ICLASSIF RED *D TmUi P30601-2-S-02u3

22 IIEEIIIEI fLI
KA-11 81rTnEACLIS M yP694

The PPMAF file consists of a variable number of two record

types: The first record type contains, for each 'Discrepancy Report,
all previously mentioned data with the exception of the names of

the programs and segments which were affected by the modification.

The names of these programs and segments are described in record
type 2, one record for each program or segment.

The PPMAF file format is depicted in Figure B-3. A set of

records is defined for each unique Discrepancy Report/ CPCG combi-
nation. If a Discrepancy Report references more than one CPCG,
another Maintenance Activity form must be completed, resulting in

an additional set of records in the PPMAF file for the same

Discrepancy Report number.

This file should be updated periodically as documentation on

new PAVE PAWS Software Version Releases is received.

The record format for the PPMAF file refers to eleven (11)

notes in the cormments column of Figure B-3. Explanations of these

notes are as follows.

Note 1: Maintenance Type - Enter up to two codes which de-
scribe the type of maintenance being performned. The
primary reason code is suffixed with a one (1) and
the secondary reason code is suffixed with a two (2).
The list of possible codes is:

E - Error Correction
A - Add Capability
D - Delete Capability
0 - Optimize/Enhance

Example:
Columns 25 - 26 El
Columns 27 - 28 A2 or 00 if not needed

B-1l

Note 2: Precision of Change Specification - Enter the code
which best describes how detailed the documentation
(MRA, PMR, PCD, MDIS, PDDR) describes the change to
be performed. The list of possible codes is:

VP - Very Precise
PO - Precise
IM - Imprecise

Example:

Columns 31 - 32 PO

Note 3: Ursency of Maintenance Activity - Enter the code
which best describes the priority associated with
the resolution of this change request. These codes
are usually found on the DR or MRA forms. They are
always found in the machine readable DR Database
(Discrepancy Report History File PPDRH) received
periodically from the SPA. The list of possible
codes is:

E - Emergency
U - Urgent
R - Routine

Example:

Column 33 - U

Note 4: Complexity of Change Activity - Enter the code which
best describes the difficulty of making the software
modification. The list of possible codes is:

VC - Very Complex
CO - Complex
M- Medium
S- Simple
VS - Very Simple

Example:

Columns 34 - 35 VS

B-12

Note 5: Means of Initial Detection - Enter up to two codes
which most accurately describe how the problem which
initiated this change exhibited itself. In this
case, the distinction is made between primary and
secondary reason codes by the order which they are
defined. The list of possible codes is:

HP - Hand Processing
PC - Personal Communication
IL - Infinite Loop
MC - Maintenance Crosscheck due to making an

unrelated software change
IE - Interrupt Error
10 - Incorrect Output or Result
MO - Missing Output
EM - Error Message
CR - Code Review
DR - Documentation
SD - Special Debug Code
OT - Other

Example:

Columns 36 - 37 MO
Columns 38 - 39 MC or 0 if not needed

Note 6: Programmer ID Code - Enter the code associated with
the programmer who performed the major portion of
the change. The code is constructed by concatena-
tion of the first six characters of the surname to
the first name initial.

Example:
Given the name Mary Smither
Columns 40 - 46 MSHITH-E

Note 7: Number of Segments Affected - Enter the number which
indicates how many programs and segments were
changed, added and deleted from the CPCG undergoing
change. If this is a documentation change only,
enter zero (0). This number determines how many
type 2 records follow record type 1.

B-13

i I l I I / I II I --

Note 8: Source of Error - If the reason for change was due
to the detectioFn of an error, enter the appropriate
code which corresponds to the probable error source.
Up to three (3) error sources may be entered. The
order they are entered determines whether the source
of the error is primaryI secondary or tertiary. If
no error occurred. enter blanks in columns 58-63.
The list of possible codes is:

MS - Misinterpretation of Spec ications
IS - Incorrect Specifications
NS - Incomplete Specifications
SF - Specified Function not Implemented

Correctly
S1 - Specified Interface not Implemented

Correctly
SO - Software Interface to another Program
HI - Hardware-Software Interface
OS - Operating System
LE - Logic Error
CE - Computational Error
DE - Data 1/O Error
DD - Data Definition Error
CN - Cause Not Found - Workaround Used
10 - I/O Software
PM - Due to Prior Modification
SS - Support Software
DS - Deck Setup Error
OE - Operator Error
OT - Other

Example:
Columns 58 - 59 10
Columns 60 - 61 51
Columns 62 - 63 00 (not needed)

Note 9: Nature of Change - If the software documentation
and/or source code was modified due to the correc-
tion, addition, deletion or enhancement of a func-
tion, enter the type of change made to the system in
columns 64 - 69. Otherwise, enter blanks. The list
of possible codes is:

B-14

DO - Documentation
F1 - Fix Instruction
CC - Change Constants
ST - Structural Change
AL - Algorithmic
OT - Other

Example:

Columns 64 - 65 AL
Columns 66 - 67 DO
Columns 68 - 69 00 if not needed

Note 10: Type of New Requirement - If the source code or
documentation was not in error but was modified to
delete or add a capability or optimize performance,
enter the new requirements code from the list below
in columns 70 - 75. If the change was not due to
a new requirement, enter blanks. The list of
possible new requirements codes is:

MI - Mission Changed
EM - New Engineering Model
SW - More Efficient Software being Implemen-

ted
HW - New Hardware being Added or Old Hardware

being Removed
SS - New Support Software being Implemented
OT - Other

Example:

Columns 70 - 71 MI
Columns 72 - 73 00 if not needed
Columns 74 - 75 00 if not needed

Note 11: Name of Segment Affected - This entry has three
possible formats, depending upon whether 1) only
one CPC was affected; 2) more than one CPC was
affected by the change; or 3) the CPC name is longer
than 5 characters.

B-1 5

One CPC Affected - When only one CPC is affected by
the change, columns 20 - 24 should contain the name
of the CPC. The normal longname format of a pro-
gram or segment may contain up to 40 characters.
An example is the following for CPCG = TGDB and
CPC = LOAD:

"TGDB.LOAD.SPARE.SPACE.FILE"

Since the first two strings are already identified,
enter "SPARE.SPACE.FILE" in columns 7 - 22 of rrc-
ord type 2.

CPC Name Longer than Five Characters - When the CPC
name is longer than five characters, enter blanks
in columns 20 -24. The CPC name is included in the
string which starts in column 7 of the record type
2 associated with the segment. For example, given
CPC = LOADER in the segment "TGDB.LOADER.COMPOOL.
DATABASE", leave columns 20 - 24 of record type 1
blank and enter:

LOADER.COMPOOL.DATABASE in columns 7 - 29 of record
type. 2.

Move than One CPC Affected - When more than one CPC
is ffected by a software modification request,
columns 20 - 24 are left blank and the CPC name is
included in the string which starts in column 7 of
record type 2. An example of this case is when two
CPC's are modified due to one Deficiency Report.
Suppose the following segments are affected:
"TGDB.LOAD.SPARE.SPACE.FILE" and "TGDB.LOADER.
COMPOOL.DATABASE". The CPCG name is already de-
fined in columns 16 - 19. The integer 2 will be
entered in columns 55 - 57, right justified. Two
type 2 records are required:

Example:

#1 - columns 7 - 27 LOAD.SPARE.SPACE.FILE
#2 - columns 7 - 29 LOADER.COMPOOL.DATABASE

4

B-16

LOCATION DESCRIPTION FORMAT COMMENTS

RECORD 1
1- 5 Discrepancy Report Number I5

6-11 Date DR Submitted 16 YYMMDD

12-15 CPCI Affected A4

16-19 CPCG Affected A4 One Record for
each CPCG

20-24 CPC Affected A5 Leave blank if
more than one

25-26 Maintenance Type (Primary) A2 Note 1

27-28 Maintenance Type (Secondary) A2 Blank if not
needed

29-30 Version Release Affected A2

31-32 Precision of Change Specifi- A2 Note 2
cation

33 Urgency Code Al Note 3

34-35 Complexity of Change A2 Note 4
36-37 Means of Initial Detection A2 Note 5

(Primary)

38-39 Means of Initial Detection A2 Blank if not
(Secondary) needed

40-46 Programmer ID Code A7 Note 6
47-50 Manhours to Change 14

51-54 Tenths of Computer Hours 14

55-57 Number of Segments Affected 13 Note 7

58-59 Source of Error (Primary) A2 Note 8

60-61 Source of Error (Secondary) A2 Blank if not
needed

62-63 Source of Error (Tertiary) A2
64-65 Nature of Change (Primary) A2 Note 9

66-67 Nature of Change (Secondary) A2 Blank if not
needed

68-69 Nature of Change (Tertiary) A2

FIGURE B-3 MAINTENANCE ACTIVITY FILE (PPAF)

B-17.5

LOCATION DESCRIPTION FORMAT COMMENTS

RECORD 1 CONTINUED

70-71 Type of New Requirement A2 Note 10
(Primary)

72-73 Type of New Requirement A2 Blank if not
(Secondary) needed

74-75 Type of New Requirement A2
(Tertiary)

RECORDS 2 THRU N+1: where N # Segments Affected
1- 5 Discrepancy Report Number 15

6 Segment Added (A), 11
Deleted (D) or

Changed (C)

7-46 Name of Segment Affected A35 Note 11

FIGURE B-3 MAINTENANCE ACTIVITY FILE (PPMAF) CONT.

B-18

5. CPCG Description File (PPCDF)

This file is used to describe the physical characteristics

of each Computer Program Configuration Group (CPCG).

This file consists of a variable number of 57 character rec-

ords; one record for each CPCG/PSL date combination. It should be

updated periodically so it can be used for CPCI/CPCG growth

tudies.

The PPCDF record format is-depicted in Figure B-4. The name

and development environment data in columns 1 - 26 should remain

constant between CPCG updates. However, columns 27 - 57 may vary

between PSL Management Report Dates. The data in this file de-
fines the physical characteristics of each CPCG at a specific

point in time given by the PSL Management Report Date (record

fields 27 - 32).

LOCATION DESCRIPTION FORMAT COMMENTS

1- 4 CPCI Name A4

5-13 CPCG Name A9 Key is first 4
Characters

14 Special Display Al Y or N

15 Detailed Requirements Al Y or N
Definition

16 Change to Operational Al Y or N
Requirement

17 Real Time Operation Al Y or N

18 CPU Memory Constraint Al Y or N

19 CPU Time Constraint Al Y or N

20 First Software Developed Al Y or N
on CPU

21 Developed Concurrently with Al Y or N
Hardware

FIGURE B-4 CPCG DESCRIPTION FILE (PPCDF)

B-19

• I I

LOCATION DESCRIPTION FORMAT COMMENTS

22 Time Sharing (Vs Batch) Al Y or N

23 Developer Used Separate Al Y or N
Facility

24 Developed on Operational Site Al Y or N

25 Developed on Other than Al Y or N
Target System

26 Programmer had Direct Access Al Y or N
to Computer

27-32 PSL Management Report Date 16 YYMMDD
33-35 PSL Library Level A3

36-38 Source of Data A3 Summary by
SEG or PRG

39-41 Number of Programs 13

42-45 Number of Segments 14

46-51 Number of Source Lines 16

52-57 Number of Object Words 16

FIGURE B-4 CPCG DESCRIPTION FILE (PPCDF) CONT.

B-20

6. CPCG Status File (PPCSF)

This file is used to describe the status of each Computer

Program Configuration Group (CPCG).

This file consists of a variable number of 150 character

records; one record for each CPCG/PSL date combination. It should

be updated periodically so it can be used to relate CPCI/CPCG

status, date of change and growth rate to the occurrence of main-

tenance change activity and distribution of efforts.

The PPCSF record format is depicted in Figure 8-5. The data

contained in each record is obtained from the following Program

Support Library Management Reports: Code Programming Durability

Report, the Summary by Programs Report and the Summary by Seg-

ments Report.

LOCATION DESCRIPTION FORMAT COMMENTS

1- 4 CPCG Name A4

5- 10 PSL Management Report Date 16

11- 15 Number of Lines Effective 15
Code at PRG Level

16- 17 Highest VN at this Level A2

18- 22 Number of Lines Effective 15
Code at CPT Level

23- 23 Highest VN at this Level A2

25- 29 Number of Lines Effective I5
Code at INT Level

30- 31 Highest VN at this Level A2

32- 36 Number of Lines Effective 15
Code at FIX Level

37- 38 Highest VN at this Level A2

39- 43 Number of Lines Effective 15
Code at TST Level

FIGURE B-5 CPCG STATUS FILE (PPCSF)

B-21

I I-- - - _' _::.7 1 -Z

LOCATION DESCRIPTION A2FORMA COMMENTS
44- 45 Highest VN at this Level A2

46- 50 Number of Lines Effective
15

Code at FRZ Level

51- 52 Highest VN at this Level
A2

53- 57 Number of Lines Effective
I5

Code at DEL Level

58- 59 Highest VN at this Level A2

60- 64 Number of Lines Durable

Code at PRG Level

65- 66 Highest VN at this Level A2

67- 71 Number of Lines Durable
IS

Code at CPT Level

72- 73 Highest VN at this Level A2

74- 78 Number of Lines Durable
15

Code at INT Level

79- 80 Highest VN at this Level
A2

81- 85 Number of Lines Durable
Code at FIX Level

86- 87 Highest VN at this Level AZ

88- 92 Number of Lines Durable
I5

Code at TST Level A

93- 94 Highest VN at this Level A2

95- 99 Number of Lines Durable
15

Code at FRZ Level

100-101 Highest VN at this Level
A2

102-106 Number of Lines Durable 15

Code at DEL Level

107-108 Highest VN at this Level
A2

109-114 Last Change at PRG Level 16 YYMMDD

115-120 Last Change at CPT Level
16 yYMMD

FIGURE B-5 CPCG STATUS FILE (PPCSF)
CONT.

B-22

LOCATION DESCRIPTION FOP4iAT COMMENTS

121-126 Last Change at INT Level 16 YYMOD

127-132 Last Change at FIX Level 16 YYWM4O

133-138 Last Change at TST Level 16 YY44DD

139-144 Last Change at FRZ Level 16 YYMMD

149-150 Last Change at DEL Level 16 YYMMDD

Note 1: VN Version Release Number

Note 2: Within the PSL, seven hierarchical library levels are defined.

Starting with the highest level in the PSL, these levels
include:

DEL - software which is in the field

FRZ - software which has been qualified

TST - software undergoing qualification test

FIX - software corrections for TST level

INT - software undergoing integration test

CPT - software undergoing group test

PRG - software under development/unit test.

FIGURE B-5 CPCG STATUS FILE (PPCSF) CONT.

B-23

,,m I I l I II ,, ,

7. Program Change History File (PPPCH)

This file contains a list of CPCs (programs) which have been

created or changed since the last software version release.

Figure B-6 depicts the format of this file.

LOCATION DESCRIPTION FORMAT COMMENTS

1- 40 Program Longname A40

42- 47 Program Shortname A6

49- 52 Language A4

55- 61 Date Program Last Changed A8 YY/MM/DD

64- 71 Time Program Last Changed A8 HHMM.SS

72- 76 Number of Segments in 15
Program

77- 82 Total Size (Including all 16
Segments)

83- 86 Number of Stubs 14

88- 89 Program Version (Maximum A2
of All Segment Versions)

90- 93 Program Edition (Sum of 14
All Segment Editions)

94- 98 Program Instance (Incre- 15
mental For Each Compile)

101-108 Date Compiled A8 YY/MM/DD

110-117 Time Compiled A8 HH.MM.SS

118-123 Object Size (Decimal Words) 16

FIGURE B-6 PROGRAM CHANGE HISTORY FILE (PPPCH)

B-24

8. Segment Change History File (PPSCH)

This file contains a list of INCLUDEed segments which have

been created or changed since the last software version release.

Figure B-7 depicts the format of this file.

LOCATION DESCRIPTION FORMAT COMMENTS

1- 40 Segment Longname A40

42- 47 Segment Shortname A6

49- 52 Language A4

54- 57 Segment Type A4

59- 66 Date Segment was Created A8 YY/MM/DD

67- 70 Current # Lines in Segment 14

71- 74 Gross Size Including Lines 14
Deleted

76- 83 Date Segment Last Changed A8 YY/Mt/DD

85- 92 Time Segment Last Changed A8 HH.M.SS

94- 95 Segment Version A2

96- 99 Segment Edition 14
100-103 Total Number of Times 14

Segment has Been Changed

104-107 Number of Changes Made to 14
Current Version

108-111 Number of Lines (Gross) 14

for Current Version

113-118 ID of Creater A6

120 Special Flag Al See p. 25
RADC-TR-79-137

128-130 ID of Person who Last A3
Changed the Segment

FIGURE B-7 SEGMENT CHANGE HISTORY FILE (PPSCH)

B2

. ,.,,. -25

TIT

